Difference between revisions of "UKCA & UMUI Tutorial 8"

From UKCA
(Created page with " Back to UKCA & UMUI Tutorials ==Adding Wet Deposition== ! The following formula is used to calculate the effective Henry's Law coef, ! which tak…")
 
Line 3: Line 3:
 
==Adding Wet Deposition==
 
==Adding Wet Deposition==
   
  +
The formulationn used in UKCA is described in Giannakopoulos (1999)[1]. This scheme uses the following formula to calculate the effective Henry's Law coefficient
  +
  +
<math>
  +
H_{eff} = k(298) \exp \left(-\frac{\deltaH{/R}\left[\left(\frac{1}{T} - \frac{1}{298}\right]\right)
  +
</math>
  +
  +
'''References'''
  +
# Giannakopoulos, C., M. P. Chipperfield, K. S. Law, and J. A. Pyle (1999), Validation and intercomparison of wet and dry deposition schemes using 210Pb in a global three-dimensional off-line chemical transport model, J. Geophys. Res., 104(D19), 23761–23784, doi:10.1029/1999JD900392.
   
   

Revision as of 16:12, 24 June 2013

Back to UKCA & UMUI Tutorials

Adding Wet Deposition

The formulationn used in UKCA is described in Giannakopoulos (1999)[1]. This scheme uses the following formula to calculate the effective Henry's Law coefficient

Failed to parse (unknown function "\deltaH"): {\displaystyle H_{eff} = k(298) \exp \left(-\frac{\deltaH{/R}\left[\left(\frac{1}{T} - \frac{1}{298}\right]\right) }

References

  1. Giannakopoulos, C., M. P. Chipperfield, K. S. Law, and J. A. Pyle (1999), Validation and intercomparison of wet and dry deposition schemes using 210Pb in a global three-dimensional off-line chemical transport model, J. Geophys. Res., 104(D19), 23761–23784, doi:10.1029/1999JD900392.


! The following formula is used to calculate the effective Henry's Law coef,
! which takes the affects of dissociation and complex formation on a species'
! solubility (see Giannakopoulos, 1998)
!
!       H(eff) = K(298)exp{[-deltaH/R]x[(1/T)-(1/298)]}
!
! The data in columns 1 and 2 above give the data for this gas-aqueous transfer,
!       Column 1 = K(298) [M/atm]
!       Column 2 = -deltaH/R [K-1]
!
! If the species dissociates in the aqueous phase the above term is multiplied by
! another factor of 1+{K(aq)/[H+]}, where
!       K(aq) = K(298)exp{[-deltaH/R]x[(1/T)-(1/298)]}
! The data in columns 3 and 4 give the data for this aqueous-phase dissociation,
!       Column 3 = K(298) [M]
!       Column 4 = -deltaH/R [K-1]
! The data in columns 5 and 6 give the data for a second dissociation,
! e.g for SO2, HSO3^{-}, and SO3^{2-}
!       Column 5 = K(298) [M]
!       Column 6 = -deltaH/R [K-1]

Written by Luke Abraham 2013