UKCA Chemistry and Aerosol Tutorial 10: Difference between revisions
(Created page with " Back to UKCA Chemistry and Aerosol Tutorials ==Adding Wet Deposition== The formulation used in UKCA is described in Giannakopoulos (1…") |
m (Protected "UKCA Chemistry and Aerosol Tutorial 10" ([edit=sysop] (indefinite) [move=sysop] (indefinite)) [cascading]) |
(No difference)
|
Revision as of 17:01, 13 February 2014
Back to UKCA Chemistry and Aerosol Tutorials
Adding Wet Deposition
The formulation used in UKCA is described in Giannakopoulos (1999)[1]. This scheme uses the following formula to calculate the effective Henry's Law coefficient
where is the rate constant at 298K.
During this tutorial you will be tasked with adding the wet deposition of one of your new tracers.
References
- Giannakopoulos, C., M. P. Chipperfield, K. S. Law, and J. A. Pyle (1999), Validation and intercomparison of wet and dry deposition schemes using 210Pb in a global three-dimensional off-line chemical transport model, J. Geophys. Res., 104(D19), 23761–23784, doi:10.1029/1999JD900392.
Turning on Wet Deposition for a Species
Chemistry Scheme Specification
Within the UKCA code, whether a species is wet deposited or not is controlled in the ukca_chem_scheme.F90 file. In the chch_defs_scheme array there are lines like
chch_t( 10,'HONO2 ', 1,'TR ',' ', 1, 1, 0), & ! 10 DD: 7,WD: 4, chch_t( 11,'H2O2 ', 1,'TR ',' ', 1, 1, 0), & ! 11 DD: 8,WD: 5,
Where the 1 in the 7th column turns on wet deposition of that species (being 0 otherwise). You will need to change the 0 to a 1 for the species that you wish to now wet deposit.
Setting Henry's Law values
In the ukca_chem_scheme.F90 the parameters required to calculate are held in the henry_defs_scheme array, and has format
for the 1st dissociation | for the 1st dissociation | for the 2nd dissociation | for the 2nd dissociation |
Columns 3 and 4 are used if the species dissociates in the aqueous phase. In this case, is further multiplied by a factor of
where
and column 3 contains the values of and column 4 contains the value of . Similarly, if the species dissociates a second time then a further factor of is applied, where this value of is calculated from the values of and in columns 5 and 6.
Note: As with the 2D dry deposition values in depvel_defs_scheme, the order of henry_defs_scheme also assumes that the values are in the same order as the species (that wet deposit) in the chch_defs_scheme array.
Examples for this array are
0.2100E+06, 0.8700E+04, 0.2000E+02, 0.0000E+00, 0.0000E+00, 0.0000E+00,& ! 4 HONO2 0.8300E+05, 0.7400E+04, 0.2400E-11,-0.3730E+04, 0.0000E+00, 0.0000E+00,& ! 5 H2O2
Increase the value of JPDW
Similar to when adding dry deposition of a species you will need to increase the size of the JPDW counter. This is done with a hand-edit, the value of JPDW being set in the CNTLATM file in your $HOME/umui_jobs/jobid directory.
Task 8.1: Add wet deposition of a species
Task 8.1: Add in wet deposition for BOB, using the following values:
for the 1st dissociation | for the 1st dissociation | for the 2nd dissociation | for the 2nd dissociation | ||
---|---|---|---|---|---|
Note: If you were unable to successfully complete Task 7.1, then please take a copy of the h job from the Tutorial experiment (Tutorial: solution to Task 7.1 - add new dry deposition) and work from there, as this will allow you to only make the changes required for this task.
Remember: If you are using MONSooN you will need to delete/move any existing output files in your archive directory.
Written by Luke Abraham 2014