Difference between revisions of "UKCA & UMUI Tutorial 8"
From UKCA
Line 6: | Line 6: | ||
<math> |
<math> |
||
− | H_{eff} = k(298) \exp \left(-\frac{\deltaH{/R}\left[\left(\frac{1}{T} - \frac{1}{298}\right]\right) |
+ | H_{eff} = k(298) \textrm{exp} \left(-\frac{\deltaH{/R}\left[\left(\frac{1}{T} - \frac{1}{298}\right]\right) |
</math> |
</math> |
||
Revision as of 15:12, 24 June 2013
Adding Wet Deposition
The formulationn used in UKCA is described in Giannakopoulos (1999)[1]. This scheme uses the following formula to calculate the effective Henry's Law coefficient
Failed to parse (unknown function "\deltaH"): {\displaystyle H_{eff} = k(298) \textrm{exp} \left(-\frac{\deltaH{/R}\left[\left(\frac{1}{T} - \frac{1}{298}\right]\right) }
References
- Giannakopoulos, C., M. P. Chipperfield, K. S. Law, and J. A. Pyle (1999), Validation and intercomparison of wet and dry deposition schemes using 210Pb in a global three-dimensional off-line chemical transport model, J. Geophys. Res., 104(D19), 23761–23784, doi:10.1029/1999JD900392.
! The following formula is used to calculate the effective Henry's Law coef, ! which takes the affects of dissociation and complex formation on a species' ! solubility (see Giannakopoulos, 1998) ! ! H(eff) = K(298)exp{[-deltaH/R]x[(1/T)-(1/298)]} ! ! The data in columns 1 and 2 above give the data for this gas-aqueous transfer, ! Column 1 = K(298) [M/atm] ! Column 2 = -deltaH/R [K-1] ! ! If the species dissociates in the aqueous phase the above term is multiplied by ! another factor of 1+{K(aq)/[H+]}, where ! K(aq) = K(298)exp{[-deltaH/R]x[(1/T)-(1/298)]} ! The data in columns 3 and 4 give the data for this aqueous-phase dissociation, ! Column 3 = K(298) [M] ! Column 4 = -deltaH/R [K-1] ! The data in columns 5 and 6 give the data for a second dissociation, ! e.g for SO2, HSO3^{-}, and SO3^{2-} ! Column 5 = K(298) [M] ! Column 6 = -deltaH/R [K-1]
Written by Luke Abraham 2013