Difference between revisions of "Publications"

From UKCA
 
(29 intermediate revisions by 2 users not shown)
Line 5: Line 5:
 
== 2021 ==
 
== 2021 ==
   
* Allen, R.J. et al., Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions, Env. Res. Lett., https://iopscience.iop.org/article/10.1088/1748-9326/abe06b, 2021.
+
* Allen et al., Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions, Env. Res. Lett., https://iopscience.iop.org/article/10.1088/1748-9326/abe06b, 2021.
* Clyne M., et al., Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3317/2021/, 2021.
+
* Clyne et al., Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3317/2021/, 2021.
 
* Fenech et al., Future health burdens associated with emission changes in the UK, Sci. Total Environ., https://www.sciencedirect.com/science/article/abs/pii/S0048969721007038?dgcid=coauthor, 2021.
 
* Fenech et al., Future health burdens associated with emission changes in the UK, Sci. Total Environ., https://www.sciencedirect.com/science/article/abs/pii/S0048969721007038?dgcid=coauthor, 2021.
 
* Garfinkel et al., Influence of ENSO on entry stratospheric water vapor in CCMI models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3725/2021/, 2021.
 
* Garfinkel et al., Influence of ENSO on entry stratospheric water vapor in CCMI models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3725/2021/, 2021.
* Griffiths et al., Tropospheric ozone in CMIP6 simulations, Atmos. Chem. Phys. Disc., https://acp.copernicus.org/preprints/acp-2019-1216/, Accepted, 2021.
+
* Griffiths et al., Tropospheric ozone in CMIP6 simulations, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/4187/2021/, 2021.
 
* Keeble et al., Using machine learning to make computationally inexpensive projections of 21st Century stratospheric column ozone changes in the tropics, Frontiers in Earth Science, https://www.frontiersin.org/articles/10.3389/feart.2020.592667/full, 2021.
 
* Keeble et al., Using machine learning to make computationally inexpensive projections of 21st Century stratospheric column ozone changes in the tropics, Frontiers in Earth Science, https://www.frontiersin.org/articles/10.3389/feart.2020.592667/full, 2021.
 
* Liu et al., Contrasting atmospheric ozone chemical environments in China: different effectiveness of emission control strategies regionally and across the globe, Atmos. Chem. Phys. Disc., https://acp.copernicus.org/preprints/acp-2020-1251/, In discussion, 2021.
 
* Liu et al., Contrasting atmospheric ozone chemical environments in China: different effectiveness of emission control strategies regionally and across the globe, Atmos. Chem. Phys. Disc., https://acp.copernicus.org/preprints/acp-2020-1251/, In discussion, 2021.
Line 24: Line 24:
 
* Allen et al., Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9641/2020/, 2020.
 
* Allen et al., Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9641/2020/, 2020.
 
* Amos et al., Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9961/2020, 2020.
 
* Amos et al., Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9961/2020, 2020.
* Antuña-Marrero et al., Shipborne lidar measurements showing the progression of the tropical reservoir of volcanic aerosol after the June 1991 Pinatubo eruption, Earth Sys. Sci. Data, https://essd.copernicus.org/articles/12/2843/2020/, 2020.
+
* Antuña-Marrero, J.-C., G.W. Mann, P. Keckhut, S. Avdyushin, B. Nardi and L.W. Thomason (2020): Shipborne lidar measurements showing the progression of the tropical reservoir of volcanic aerosol after the June 1991 Pinatubo eruption, Earth Sys. Sci. Data, vol. 12, 2843-2851, https://doi.org/10.5194/essd-12-2843-2020.
  +
* Antuña-Marrero, J.-C., G.W. Mann, J. Barnes, A. Rodriguez-Vega, S. Shallcross, S. Dhomse, G. Giocco and G.W. Grams (2020): Recovery of the first ever multi-year lidar dataset of the stratospheric aerosol layer, from Lexington, MA, and Fairbanks, AK, January 1964 to July 1965, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-246.
* Archibald et al., Description and Evaluation of the UKCA stratosphere-troposphere chemistry (UKCA StratTrop) as implemented in UKESM1, Geosci. Model Dev., https://gmd.copernicus.org/articles/13/1223/2020/, 2020.
 
  +
* Archibald, A.T., F.M. O'Connor, N.L. Abraham, S. Archer-Nicholls, M.P. Chipperfield, M. Dalvi, G.A. Folberth et al. (2020): Description and evaluation of the UKCA stratosphere-troposphere chemistry (UKCA StratTrop) as implemented in UKESM1, Geosci. Model Dev., vol. 13, 1223-1266, https://doi.org/10.5194/gmd-13-1223-2020.
* Archibald et al., On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms, Phil. Trans. Royal Soc., https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0329, 2020.
 
  +
* Archibald, A.T., S.T. Turnock, P.T. Griffiths, T. Cox, R.G. Derwent, C. Knote and M. Shin (2020): On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms, Phil. Trans. Royal Soc. A, vol. 378, https://doi.org/10.1098/rsta.2019.0329.
* Dhomse et al., Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/13627/2020/, 2020.
 
  +
* Dhomse, S.S., G.W. Mann, J.-C. Antuna-Marrero, S.E. Shallcross, M.P. Chipperfield, K.S. Carslaw, L. Marshall, N.L. Abraham, and C.E. Johnson (2020): Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds, Atmos. Chem. Phys., vol. 20, 13627-13654, https://doi.org/10.5194/acp-20-13627-2020.
* Griffiths et al., On the Changing Role of the Stratosphere on the Tropospheric Ozone Budget: 1979-2010, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019GL086901, 2020.
 
  +
* Griffiths, P. T., J. Keeble, Y.M. Shin, N.L. Abraham, A.T. Archibald, and J.A. Pyle (2020): On the changing role of the stratosphere on the tropospheric ozone budget: 1979–2010. Geophys. Res. Lett., 46, https://doi.org/10.1029/2019GL086901.
* Heimann et al., Methane Emissions in a Chemistry-Climate Model: Feedbacks and Climate Response, J. Adv. Earth Sys. Modeling, https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019MS002019, 2020.
 
* Keeble et al., Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/7153/2020/, 2020.
+
* Grosvenor, D.P. and K.S. Carslaw (2020): The decomposition of cloud–aerosol forcing in the UK Earth System Model (UKESM1), Atmos. Chem. Phys., vol. 20, 15681-15724, https://doi.org/10.5194/acp-20-15681-2020.
  +
* Heimann, I., P.T. Griffiths, N.J. Warwick, N.L. Abraham, A.T. Archibald and J.A. Pyle: Methane Emissions in a Chemistry-Climate Model: Feedbacks and Climate Response, J. Adv. Earth Sys. Modeling, https://doi.org/10.1029/2019MS002019.
* Keeble et al., Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/7153/2020/, 2020.
 
  +
* Keeble, J., N.L. Abraham, A.T. Archibald, M.P. Chipperfield, S.S. Dhomse, P.T. Griffiths and J.A. Pyle (2020): Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery, Atmos. Chem. Phys., vol. 20, 7153-7166, https://doi.org/10.5194/acp-20-7153-2020.
* Morgenstern et al., Reappraisal of the climate impacts of ozone-depleting substances, Geophys. Res. Letts., https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL088295, 2020.
 
  +
* Morgenstern, O., F.M. O'Connor, B.T. Johnson, G. Feng, J.P. Mulcahy, J. Williams, J. Teixeira, M. Michou, P. Nabat et al. (2020): Reappraisal of the climate impacts of ozone-depleting substances, Geophys. Res. Lett., 47, https://doi.org/10.1029/2020GL088295.
* Mulcahy et al., Description and evaluation of aerosol in UKESM1 and HadGEM-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., https://gmd.copernicus.org/articles/13/6383/2020/, 2020.
 
  +
* Mulcahy, J.M., C. Johnson, C.G. Jones, A.C. Povey, C.E. Scott, A. Sellar, S.T. Turnock, M.T. Woodhouse, N.L. Abraham et al. (2020): Description and evaluation of aerosol in UKESM1 and HadGEM-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., vol. 13, 6383-6423, https://doi.org/10.5194/gmd-13-6383-2020.
 
* Nicely et al., A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/1341/2020/, 2020.
 
* Nicely et al., A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/1341/2020/, 2020.
 
* Orbe et al., Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/3809/2020/, 2020.
 
* Orbe et al., Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/3809/2020/, 2020.
Line 57: Line 58:
 
* Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019.
 
* Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019.
 
* Malavelle, F.F., et al., Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, https://acp.copernicus.org/articles/19/1301/2019/, 2019
 
* Malavelle, F.F., et al., Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, https://acp.copernicus.org/articles/19/1301/2019/, 2019
* Marshall et al., Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation, J. Geophys. Res.: Atmos., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JD028675, 2019.
+
* Marshall, L., J.S. Johnson, G.W. Mann, L.A. Lee, S.S. Dhomse, L.A. Regayre, M. Yoshioka, K.S Carslaw and A. Schmidt (2019): Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation, J. Geophys. Res.: Atmos., vol. 124, https://doi.org/10.1029/2018JD028675.
 
* McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z
 
* McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z
 
* Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516.
 
* Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516.
 
* Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019.
 
* Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019.
  +
* Sellar, A., C. G. Jones, J. P. Mulcahy, Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M. et al. (2019): "UKESM1: Description and evaluation of the U.K. Earth System Model", J. Adv. Modeling Earth Sys., vol. 11, issue 12, 4513-4558, https://doi.org/10.1029/2019MS001739
 
* Shi et al., Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/7519/2019/, 2019.
 
* Shi et al., Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/7519/2019/, 2019.
 
* SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/.
 
* SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/.
 
* Turnock et al., The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082067, 2019.
 
* Turnock et al., The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082067, 2019.
  +
* Turnock et al., The impact of climate mitigation measures on near term climate forcers, Environ. Res. Lett., https://iopscience.iop.org/article/10.1088/1748-9326/ab4222, 2019.
  +
* Turnock et al., 300 years of tropospheric ozone changes using CMIP6 scenarios with a parameterised approach, Atmos. Environ., https://www.sciencedirect.com/science/article/pii/S1352231019304443?via%3Dihub, 2019.
 
* Walters et al., The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., https://gmd.copernicus.org/articles/12/1909/2019/gmd-12-1909-2019.html, 2019.
 
* Walters et al., The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., https://gmd.copernicus.org/articles/12/1909/2019/gmd-12-1909-2019.html, 2019.
 
* Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019.
 
* Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019.
Line 79: Line 83:
 
* Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018.
 
* Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018.
 
* Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035.
 
* Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035.
* Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, doi:10.5194/acp-18-1091-2018.
+
* Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018.
  +
* Mulcahy, J.P., C. Jones, A. Sellar, B. Johnson, I. A. Boutle, A. Jones, T. Andrews, S. T. Rumbold, J. Mollard, N. Bellouin, C. E. Johnson et al. (2018): Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, J. Adv. Mod. Earth Systems, 10, 2786-2805, https://doi.org/10.1029/2018MS001464.
* Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, doi:10.5194/acp-18-7217-2018
 
  +
* Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018
 
* Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018.
 
* Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018.
* Timmreck et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., https://gmd.copernicus.org/articles/11/2581/2018/, 2018.
+
* Timmreck, C., Mann, G.W., Aquila, V., Hommel, R., Lee, L.A., Schmidt, A., Bruehl, C., Carl, S. et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., vol. 11, 2581-2608, https://doi.org/10.5194/gmd-11-2581-2018, 2018.
 
* Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978.
 
* Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978.
 
* WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.
 
* WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.
   
 
== 2017 ==
 
== 2017 ==
* Anderson, D., and 37 others (2017), Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026121.
+
* Anderson, D. C., J. M. Nicely, G. M. Wolfe, T. F. Hanisco, R. J. Salawitch, T. P. Canty et al. (2017): Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, 11,201–11,226 https://doi.org/10.1002/2016JD026121.
  +
* Brooke, J. S. A., Feng, W., Carillo-Sanchez, J. D., Mann, G. W., James, A. D., Bardeen, C. G. et al. (2017): Meteoric smoke deposition in the polar regions: A comparison of measurements with global atmospheric models, J. Geophys. Res.: Atmos., 122, 11,112–11,130, https://doi.org/10.1002/2017JD027143.
* Dennison, F., McDonald, A., and Morgenstern, O.: The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, doi:10.5194/acp-17-14075-2017, 2017.
 
  +
* Butt, E. W., S. T. Turnock, R. Rigby, C. L. Reddington, M. Yoshioka, J. S. Johnson, L. A. Regayre et al. (2017): Global and regional trends in particulate air pollution and attributable health burden over the past 50 years, Environ. Res. Lett., vol. 12, no. 10, https://doi.org/10.1088/1748-9326/aa87be.
* Hardiman et al., The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, [http://www.geosci-model-dev.net/10/1209/2017/ Geosci. Model Dev.], 10, 1209-1232, 2017.
 
  +
* Dennison, F., McDonald, A., and Morgenstern, O. (2017): The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, https://doi.org/10.5194/acp-17-14075-2017.
* Hopcroft et al., Understanding the glacial atmospheric methane cycle, [http://www.nature.com/articles/ncomms14383 Nature Comms.], 8, 14383, doi:10.1038/ncomms14383, 2017.
 
  +
* Hardiman, S. C., Butchart, N., O'Connor, F. M. and Rumbold, S. (2017): The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev., 10, 1209-1232, https://doi.org/10.5194/gmd-10-1209-2017.
* Liang, Q., and 27 others (2017), Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, doi:10.1002/2017JD026926.
 
  +
* Hopcroft, P. O., P. J. Valdes, F. M. O'Connor, Kaplan, J. O. and Beerling, D. J. (2017): Understanding the glacial atmospheric methane cycle, 8, 14383, https://doi.org/10.1038/ncomms14383.
* Malavelle et al., Evidence cloud liquid water path is invariant in Aerosol-Cloud Interactions, [http://www.nature.com/nature/journal/v546/n7659/full/nature22974.html Nature], 546, 485-491, 2017.
 
  +
* Liang, Q., M. P. Chipperfield, E. L. Fleming, N. L. Abraham, P. Braesicke, J. B. Burkholder et al. (2017): Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, https://doi.org/10.1002/2017JD026926.
* Morgenstern, O., and 37 others (2017), Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), [http://www.geosci-model-dev.net/10/639/2017/ Geosci. Model Dev.], 10, 639-671, 2017.
 
  +
* Malavelle, F. F., J. M. Haywood, A. Jones, A. Gettelman, L. Clarisse, S. Bauduin, R. P. Allen et al. (2017): Strong constraints on aerosol-cloud interactions from volcanic eruptions, Nature, 546, 485-491, https://doi.org/10.1038/nature22974.
* Pannullo et al., Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, [http://ehjournal.biomedcentral.com/articles/10.1186/s12940-017-0237-1 Environ. Health], DOI:10.1186/s12940-017-0237-1, 2017.
 
* Son, S.-W., and 28 others (2017), Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024.
+
* Morgenstern, O., M. I. Hegglin, E. Rozanov, F. M. O'Connor, N. L. Abraham, H. Akiyoshi, A. T. Archibald, S. Bekki et al. (2017): Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639-671, https://doi.org/10.5194/gmd-10-639-2017.
  +
* Pannullo, F., D. Lee, L. Neal, M. Dalvi, P. Agnew, F. M. O'Connor, S. Mukhopadhyay, S. Sahu and C. Sarran (2017): Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, Environ. Health, vol. 16, no. 19 https://doi.org/10.1186/s12940-017-0237-1.
* Zhang, J., and 25 others (2017), Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Communications, 9, 206, doi:10.1038/s41467-017-02565-2.
 
* Zeng, G., Morgenstern, O., Shiona, H., Thomas, A. J., Querel, R. R., and Nichol, S. E.: Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, doi:10.5194/acp-17-10495-2017, 2017.
+
* Planche, C., G. W. Mann, K. S. Carslaw, M. Dalvi, J. H. Marsham and P. R. Field (2017): Spatial and temporal CCN variations in convection-permitting aerosol microphysics simulations in an idealised marine tropical domain, Atmos. Chem. Phys., 17, 3371-3384, https://doi.org/10.5194/acp-17-3371-2017.
  +
* Reddington, C., K. S. Carslaw, P. Stier, N. Schutgens, H. Coe, D. Liu, J. Allan, J. Browse, K. J. Pringle, L. A. Lee et al. (2017): The global aerosol synthesis and science project (GASSP): Measurements and modelling to reduce uncertainty, Bull. Amer. Meteorol. Soc., 98, 1857-1877, https://doi.org/10.1175/BAMS-D-15-00317.1.
  +
* Son, S.-W., B.-R. Han, C. I. Garfinkel, S.-Y. Kim, R. Park, N. L. Abraham, H. Akiyoshi, A. T. Archibald et al. (2017): Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024, https://doi.org/10.1088/1748-9326/aabf21.
  +
* Zhang, J., W. Tian, F. Xie, M. P. Chipperfield, W. Feng, S.-W. Son, N. L. Abraham, A. T. Archibald, S. Bekki et al. (2017): Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Comms., 9, 206, https://doi.org/10.1038/s41467-017-02565-2.
  +
* Zeng, G., O. Morgenstern, H. Shiona, A. J. Thomas, R. R. Querel and S. E. Nichol (2017): Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, https://doi.org/10.5194/acp-17-10495-2017.
   
 
== 2016 ==
 
== 2016 ==
* Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016), Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905–3925, doi:10.1002/2015JC011286.
+
* Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016): Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905–3925, https://doi.org/10.1002/2015JC011286.
  +
* Benduhn, F., G. W. Mann, Pringle, K. J., Topping, D. O., McFiggans, G. and K. S. Carslaw (2016): Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0: description, evaluation and first global modelling results, Geosci. Mod. Dev., 9, 3875-3906, https://doi.org/10.5194/gmd-9-3875-2016.
* Dennison, F. W., A. J. McDonald, and O. Morgenstern (2016), The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025033.
 
  +
* Dennison, F. W., A. J. McDonald, and O. Morgenstern (2016): The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, https://doi.org/10.1002/2016JD025033.
* López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016) Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, doi:10.5194/acp-16-14599-2016.
 
  +
* Dunne, E. M., H. Gordon, A. Kürten, J. Almeida, J. Duplissy, C. Williamson, I. K. Ortega, K. J. Pringle et al. (2016): Global atmospheric particle formation from CERN CLOUD measurements, Science, vol. 354, 6316, 1119-1124, https://doi.org/10.1126/science.aaf2649.
* Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, doi:10.1002/2015GL067545.
 
* Stone, K. A., Morgenstern, O., Karoly, D. J., Klekociuk, A. R., French, W. J., Abraham, N. L., and Schofield, R.: Evaluation of the ACCESS chemistry–climate model for the Southern Hemisphere, Atmos. Chem. Phys., 16, 2401-2415, doi:10.5194/acp-16-2401-2016, 2016.
+
* Johnson, B. T., J. M. Haywood, J. M. Langridge, E. Darbyshire, W. T. Morgan, K. Szpek, J. K. Brooke, F. Marenco, H. Coe et al. (2016): Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, Atmos. Chem. Phys., 16, 14657-14685, https://doi.org/10.5194/acp-16-14657-2016.
  +
* Kapadia, Z. Z., D. V. Spracklen, S. R. Arnold, D. J. Borman, G. W. Mann, K. J. Pringle, S. A. Monks et al. (2016): Impacts of aviation fuel sulfur content on climate and human health, Atmos. Chem. Phys., 16, 10521-10541, https://doi.org/10.5194/acp-16-10521-2016.
  +
* Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T. et al. (2015): What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II, Atmos. Chem. Phys., 16, 2765-2783, http://doi.org/10.5194/acp-16-2221-2016.
  +
* López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016): Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, https://doi.org/10.5194/acp-16-14599-2016.
  +
* Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067545.
  +
* Schmidt A., R. A. Skeffington, T. Thordarson, S. Self, P. M. Forster, A. Rap, A. Ridgwell, D. Fowler, B. M. Wilson, G. W. Mann, P. B. Wignall and K. S. Carslaw (2016): Selective environmental stress from sulphur emitted by continental flood basalt eruptions, Nature Geoscience, vol. 9, 77-82, https://doi.org/10.1038/NGEO2588.
  +
* Stone, K. A., O. Morgenstern, D. J. Karoly, A. R. Klekociuk, W. J. French, N. L. Abraham, and R. Schofield (2016): Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere, Atmos. Chem. Phys., 16, 2401-2415, doi:10.5194/acp-16-2401-2016.
  +
* Turnock, S. T., E. W. Butt, T. B. Richardson, G. W. Mann, C. L. Reddington, P. M. Forster, J. Haywood et al. (2016): The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate, Env. Res. Lett., 11, https://doi.org/10.1088/1748-9326/11/2/024010.
  +
* Zanchettin, D., M. Khodri, C. Timmreck, M. Toohey, A. Schmidt, E. P. Gerber, G. Hegerl, A. Robock et al. (2016): The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Mod. Dev., 9, 2701-2719, https://doi.org/10.5194/gmd-9-2701-2016
  +
* Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S. et al. (2016): On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models, Atmos. Chem. Phys., 16, 2765-2783, https://doi.org/10.5194/acp-16-2765-2016.
  +
 
== 2015 ==
 
== 2015 ==
  +
* Dennison, F., A. J. McDonald, and O. Morgenstern (2015), The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling, J. Geophys. Res., Atmos., 120, 6305–6312, http://doi.org/10.1002/2014JD023009.
* [http://www.sciencedirect.com/science/article/pii/S1352231015001533 Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2]. L. Giordano, D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel, G. Curci, R. Forkel, P. Jiménez-Guerrero, M. Hirtl, A. Hodzic, L. Honzak, O. Jorba, C. Knote, J.J.P. Kuenen, P.A. Makar, A. Manders-Groot, L. Neal, J.L. Pérez, G. Pirovano, G. Pouliot, R. San José, N. Savage, W. Schröder, R.S. Sokhi, D. Syrakov, A. Torian, P. Tuccella, J. Werhahn, R. Wolke, K. Yahya, R. Žabkar, Y. Zhang, S. Galmarini, Atmospheric Environment, Available online 12 February 2015, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2015.02.034.
 
  +
* Dhomse, S. S., M. P. Chipperfield, W. Feng, R. Hossaini, G. W. Mann and M. L. Santee (2015): Revisiting the hemispheric asymmetry in mid-latitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophys. Res. Lett., vol. 42(8), 3038-3047, https://doi.org/10.1002/2015GL063052.
* [http://www.atmos-chem-phys.net/15/5611/2015/acp-15-5611-2015.html Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions]. Pope, R. J., Chipperfield, M. P., Savage, N. H., Ordóñez, C., Neal, L. S., Lee, L. A., Dhomse, S. S., Richards, N. A. D., and Keslake, T. D. Atmos. Chem. Phys., 15, 5611-5626, doi:10.5194/acp-15-5611-2015, 2015.
 
  +
* Giordano, L., D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel et al. (2015): Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2, Atmos. Env., vol. 115, 371-388, https://doi.org/10.1016/j.atmosenv.2015.02.034.
* [http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-15-0075.1 Processes controlling tropical tropopause temperature and stratospheric water vapour]. Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners, S. F. Milton, C. J. Morcrette, F. M. O'Connor, B. J. Shipway, C. Smith, D. N. Walters, K. D. Williams, N. Wood, N. L. Abraham, J. M. Keeble, A. C. Maycock, J. Thurburn, and M. T. Woodhouse. J. Climate, 28, 6516-6535. doi: http://dx.doi.org/10.1175/JCLI-D-15-0075.1, 2015.
 
  +
* Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. (2015): Wet scavenging limits the detection of aerosol effects on precipitation, Atmos. Chem. Phys., 15, 7557-7570, https://doi.org/10.5194/acp-15-7557-2015.
* [http://www.atmos-chem-phys.net/15/11201/2015/acp-15-11201-2015.html The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2]. Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. Atmos. Chem. Phys., 15, 11201-11215, doi:10.5194/acp-15-11201-2015, 2015.
 
  +
* Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners et al. (2015): Processes controlling tropical tropopause temperature and stratospheric water vapour, J. Climate, 28, 6516-6535, https://doi.org/10.1175/JCLI-D-15-0075.1
* [http://www.atmos-chem-phys.net/15/7557/2015/acp-15-7557-2015.html Wet scavenging limits the detection of aerosol effects on precipitation]. Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. Atmos. Chem. Phys., 15, 7557-7570, doi:10.5194/acp-15-7557-2015, 2015.
 
  +
* Mann, G. W., Dhomse, S., Deshler T., Timmreck, C, Schmidt A, Neely, R and Thomason, L. (2015): Evolving particle size is the key to improved volcanic forcings, Past Global Change, 23(2), 52-53, https://doi.org/10.22498/pages.23.2.52
* [http://www.atmos-chem-phys-discuss.net/15/23683/2015/acpd-15-23683-2015.html On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models]. Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S., Takeamura, T., Gettelman, A., Morrison, H., Lee, Y. H., Shindell, D. T., Partridge, D. G., Stier, P., Kipling, Z., and Fu, C. Atmos. Chem. Phys. Discuss., 15, 23683-23729, doi:10.5194/acpd-15-23683-2015, 2015.
 
  +
* Planche C., J. H. Marsham, P. R. Field, K. S. Carslaw, A. A. Hill, G. W. Mann and B. J. Shipway (2015): Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model, Q. J. Roy. Meteorol. Soc., vol. 141(691), 2032-2044, https://doi.org/10.1002/qj.2497.
* [http://www.atmos-chem-phys-discuss.net/15/25933/2015/acpd-15-25933-2015.html What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II]. Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen, K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K., and Zhang, K. Atmos. Chem. Phys. Discuss., 15, 25933-25980, doi:10.5194/acpd-15-25933-2015, 2015.
 
  +
* Pope, R. J., M. P. Chipperfield, N. H. Savage, C. Ordóñez, L. S. Neal, L. A. Lee, S. S. Dhomse, N. A. D. Richards and T. D. Keslake (2015): Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions, Atmos. Chem. Phys., 15, 5611-5626, https://doi.org/10.5194/acp-15-5611-2015.
* Dennison, F., A. J. McDonald, and O. Morgenstern (2015), The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling, J. Geophys. Res., Atmos., 120, 6305–6312, doi:10.1002/2014JD023009.
 
  +
* Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. (2015): The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2, Atmos. Chem. Phys., 15, 11201-11215, https://doi.org/10.5194/acp-15-11201-2015.
  +
* Regayre, L. A., K. J. Pringle, L. A. Lee, A. Rap, J. Browse, G. W. Mann, C. L. Reddington, K. S. Carslaw, B. B. B. Booth and M. T. Woodhouse (2015): The climatic importance of uncertainties in regional aerosol-cloud radiative forcings over recent decades, J. Climate, vol. 28(17), 6589-6607, http://doi.org/10.1175/JCLI-D-15-0127.1
  +
* Scott, C. E., D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster et al. (2015): Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 15, 12989-13001, https://doi.org/10.5194/acp-15-12989-2015.
  +
* Turnock, S. T., D. V. Spracklen. K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson et al. (2015): Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009, Atmos. Chem. Phys., 15, 9477-9500, https://doi.org/doi:10.5194/acp-15-9477-2015.
 
* Zeng, G., J. E. Williams, J. A. Fisher, L. K. Emmons, N. B. Jones, O. Morgenstern, et. al. (2015), Multi-model simulation of CO and HCHO in the Southern Hemisphere: biogenic emissions and model uncertainties, Atmos. Chem. Phys., 15, 7217-7245, doi:10.5194/acp-15-7217-2015.
 
* Zeng, G., J. E. Williams, J. A. Fisher, L. K. Emmons, N. B. Jones, O. Morgenstern, et. al. (2015), Multi-model simulation of CO and HCHO in the Southern Hemisphere: biogenic emissions and model uncertainties, Atmos. Chem. Phys., 15, 7217-7245, doi:10.5194/acp-15-7217-2015.
   
 
== 2014 ==
 
== 2014 ==
  +
* Breider, T. J., M. P. Chipperfield, G. W. Mann, M. T. Woodhouse and K. S. Carslaw (2014): Suppression of CCN formation by bromine chemistry in the remote marine atmosphere, Atmos. Sci. Lett., 16(2), 141-147, https://doi.org/10.1002/asl2.539
* [http://onlinelibrary.wiley.com/doi/10.1002/2013JD021097/abstract Multi-model estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future] Chipperfield, M.P., Q. Liang, S. E. Strahan, O. Morgenstern, S.S. Dhomse, N.L. Abraham, A.T. Archibald, S. Bekki, P. Braesicke, G. Di Genova, E.L. Fleming, S.C. Hardiman, D. Iachetti, C.H. Jackman, D.E. Kinnison, M. Marchand, G. Pitari, J.A. Pyle, E. Rozanov, A. Stenke and F. Tummon, J. Geophys. Res. Atmos., 119, 5, 2555-2573, doi:10.1002/2013JD021097, 2014.
 
  +
* Browse, J., K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, C. Leck. (2014): The complex response of Arctic aerosol to sea-ice retreat, Atmos. Chem. Phys., 14, 7543-7557, https://doi.org/10.5194/acp-14-7543-2014.
* [http://onlinelibrary.wiley.com/doi/10.1002/2014GL062140/abstract Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases] O. Morgenstern, G. Zeng, S. M. Dean, M. Joshi, N. L. Abraham, and A. Osprey, Geophys. Res. Lett., 41, 9050–9057, doi:10.1002/2014GL062140, 2014.
 
  +
* Brunner, D., N. Savage, O. Jorba, B. Eder, L. Giordano, A. Badia, A. Balzarini, R. Baró, R. Bianconi, C. Chemel et al. (2014): Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2, Atmos. Env., vol. 115, 470-498, https://doi.org/10.1016/j.atmosenv.2014.12.032.
* [http://www.atmos-chem-phys.net/14/13257/2014/acp-14-13257-2014.html First comparison of the HadGEM2 climate-chemistry model against SCIAMACHY atmospheric methane columns] G.D. Hayman, F.M. O'Connor, M. Dalvi, D.B. Clark, C. Huntingford, N. Gedney, C. Prigent, M. Buchwitz, O. Schneising, and J.P. Burrows, Atmos. Chem. Phys., 14, 13257-13280, 2014.
 
  +
* Chipperfield, M.P., Q. Liang, S. E. Strahan, O. Morgenstern, S.S. Dhomse, N.L. Abraham, A.T. Archibald, S. Bekki et al. (2014): Multi-model estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future, J. Geophys. Res. Atmos., 119, 5, 2555-2573, https://doi.org/10.1002/2013JD021097.
* [http://www.atmos-chem-phys.net/14/11221/2014/acp-14-11221-2014.html Whole-atmosphere aerosol microphysics simulations of the Mt Pinatubo eruption with the UKCA composition-climate model] Dhomse S. S., K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, N. L. Abraham, P. Telford, P. Braesicke, M. Dalvi, C. E. Johnson, F. M. O'Connor, O. Morgenstern, R. Hommel, and J. A. Pyle, Atmos. Chem. Phys., 14, 11221-11246, 2014.
 
* [http://www.atmos-chem-phys.net/14/6369/2014/acp-14-6369-2014.html The importance of vertical velocity variability for estimates of the indirect aerosol effects] West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., Partridge, D. G., and Kipling, Z., Atmos. Chem. Phys., 14, 6369-6393, doi:10.5194/acp-14-6369-2014, 2014.
+
* Dhomse S. S., K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, N. L. Abraham, et al. (2014), Aerosol microphysics simulations of the Mt Pinatubo eruption with the UKCA composition-climate model, Atmos. Chem. Phys., 14, 11221-11246, https://doi.org/10.5194/acp-14-11221-2014.
  +
* Hayman, G. D., F. M. O'Connor, M. Dalvi, D. B. Clark, C. Huntingford, N. Gedney, C. Prigent, M. Buchwitz, O. Schneising and J. P. Burrows (2014): Comparison of the HadGEM2 climate-chemistry model against SCIAMACHY atmospheric methane columns, Atmos. Chem. Phys., 14, 13257-13280, 2014, https://doi.org/10.5194/acp-14-13257-2014.
* [http://http://www.atmos-chem-phys.net/14/6035/2014/acp-14-6035-2014.html Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection] Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L., Archibald, A. T., Braesicke, P., Pyle, J. A., McGregor, J., Watson, I. M., Cox, R. A., and Kalberer, M., Atmos. Chem. Phys., 14, 6035-6048, 2014.
 
  +
* Im, U., R. Bianconi, E. Solazzo, I. Kioutsioukis, A. Badia, A. Balzarini, R. Baró, R. Bellasio, D. Brunner, C. Chemel et al. (2014): Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone, Atmos. Env., vol. 115, 404-420, https://doi.org/10.1016/j.atmosenv.2014.09.042.
* [http://http://www.atmos-chem-phys.net/14/1011/2014/acp-14-1011-2014.html Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone] Squire, O. J., Archibald, A. T., Abraham, N. L., Beerling, D. J., Hewitt, C. N., Lathière, J., Pike, R. C., Telford, P. J., and Pyle, J. A. Atmos. Chem. Phys., 14, 1011-1024, doi:10.5194/acp-14-1011-2014, 2014.
 
  +
* Im, U., R. Bianconi, E. Solazzo, I. Kioutsioukis, A. Badia, A. Balzarini, R. Baró, R. Bellasio, D. Brunner, C. Chemel et al. (2014): Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter, Atmos. Env., vol. 115, pp. 421-441, https://doi.org/10.1016/j.atmosenv.2014.08.072.
* [http://www.geosci-model-dev.net/7/41/2014/gmd-7-41-2014.html Evaluation of the new UKCA climate-composition model. Part II. The troposphere]. F.M. O'Connor, C.E. Johnson, O. Morgenstern, N.L. Abraham, P. Braesicke, M. Dalvi, G.A. Folberth, M.G. Sanderson, P.J. Telford, A. Voulgarakis, P.J. Young, G. Zeng, W.J. Collins, and J.A. Pyle, Geosci. Model Dev., 7, 41-91, 2014.
 
* [http://www.atmos-chem-phys.net/14/3899/2014/acp-14-3899-2014.html Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model] Stock, Z. S., Russo, M. R., and Pyle, J. A., Atmos. Chem. Phys., 14, 3899-3912, doi:10.5194/acp-14-3899-2014, 2014.
+
* Jiao, C., M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin et al. (2014): An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., vol. 14(5), 2399-2417, https://doi.org/10.5194/acp-14-2399-2014.
  +
* Mann, G. W., K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee et al. (2014): Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity, Atmos. Chem. Phys. vol. 14(9), 4679-4713, https://doi.org/10.5194/acp-14-4679-2014.
* [http://www.sciencedirect.com/science/article/pii/S1352231014006967 Application of a statistical post-processing technique to a gridded, operational, air quality forecast]. L.S. Neal, P. Agnew, S. Moseley, C. Ordóñez, N.H. Savage, M. Tilbee, Atmospheric Environment, Volume 98, December 2014, Pages 385-393, ISSN 1352-2310, doi:10.1016/j.atmosenv.2014.09.004.
 
  +
* Morgenstern, O., G. Zeng, S. M. Dean, M. Joshi, N. L. Abraham, and A. Osprey (2014): Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases, Geophys. Res. Lett., 41, 9050–9057, https://doi.org/10.1002/2014GL062140.
* [http://www.sciencedirect.com/science/article/pii/S1352231014007353 Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone]. Ulas Im, Roberto Bianconi, Efisio Solazzo, Ioannis Kioutsioukis, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Alma Hodzic, Luka Honzak, Oriol Jorba, Christoph Knote, Jeroen J.P. Kuenen, Paul A. Makar, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guido Pirovano, George Pouliot, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Alfreida Torian, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Khairunnisa Yahya, Rahela Zabkar, Yang Zhang, Junhua Zhang, Christian Hogrefe, Stefano Galmarini. Atmospheric Environment, Available online 16 September 2014, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2014.09.042.
 
  +
* Neal, L. S. P. Agnew, S. Moseley, C. Ordóñez, N.H. Savage, M. Tilbee, Application of a statistical post-processing technique to a gridded, operational, air quality forecast, Atmos. Env., vol. 98, 385-393, https://doi.org/10.1016/j.atmosenv.2014.09.004.
* [http://www.sciencedirect.com/science/article/pii/S1352231014006839 Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter]. Ulas Im, Roberto Bianconi, Efisio Solazzo, Ioannis Kioutsioukis, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Hugo Denier van der Gon, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Alma Hodzic, Luka Honzak, Oriol Jorba, Christoph Knote, Paul A. Makar, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guido Pirovano, George Pouliot, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Alfreida Torian, Paolo Tuccella, Kai Wang, Johannes Werhahn, Ralf Wolke, Rahela Zabkar, Yang Zhang, Junhua Zhang, Christian Hogrefe, Stefano Galmarini. Atmospheric Environment, Available online 28 August 2014, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2014.08.072.
 
  +
* O'Connor, F. M., C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke, M. Dalvi, G. A. Folberth, M. G. Sanderson et al. (2014), Evaluation of the new UKCA climate-composition model. Part II. The troposphere. Geosci. Model Dev., 7, 41-91, 2014, https://doi.org/10.5194/gmd-7-41-2014.
* [http://www.sciencedirect.com/science/article/pii/S1352231014009807 Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2]. Dominik Brunner, Nicholas Savage, Oriol Jorba, Brian Eder, Lea Giordano, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bianconi, Charles Chemel, Gabriele Curci, Renate Forkel, Pedro Jiménez-Guerrero, Marcus Hirtl, Alma Hodzic, Luka Honzak, Ulas Im, Christoph Knote, Paul Makar, Astrid Manders-Groot, Erik van Meijgaard, Lucy Neal, Juan L. Pérez, Guido Pirovano, Roberto San Jose, Wolfram Schröder, Ranjeet S. Sokhi, Dimiter Syrakov, Alfreida Torian, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Khairunnisa Yahya, Rahela Zabkar, Yang Zhang, Christian Hogrefe, Stefano Galmarini, Atmospheric Environment, Available online 15 December 2014, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2014.12.032.
 
  +
* Regayre, L. A., K. J. Pringle, B. B. B. Booth, L. A. Lee, G. W. Mann, J. Browse, M. T. Woodhouse, A. Rap, C. L. Reddington, K. S. Carslaw (2014): Uncertainty in the magnitude of aerosol‐cloud radiative forcing over recent decades, Geophys. Res. Lett. 41(24), 9040-9049, https://doi.org/10.1002/2014GL062029.
  +
* Scott, C. E., A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen and P. Tunved (2014): The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14(1), 447-470, https://doi.org/10.5194/acp-14-447-2014.
  +
* Squire, O. J., Archibald, A. T., Abraham, N. L., Beerling, D. J., Hewitt, C. N., Lathière, J., Pike, R. C., Telford, P. J., and Pyle, J. A., Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone, Atmos. Chem. Phys., 14, 1011-1024, http://doi.org/10.5194/acp-14-1011-2014.
  +
* Stock, Z. S., Russo, M. R., and Pyle, J. A. (2014): Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model, Atmos. Chem. Phys., 14, 3899-3912, https://doi.org/10.5194/acp-14-3899-2014.
  +
* Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L., Archibald, A. T., Braesicke, P., Pyle, J. A. et al. (2014): Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection, Atmos. Chem. Phys., 14, 6035-6048, https://doi.org/10.5194/acp-14-6035-2014.
  +
* Tsigaridis K., N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin et al. (2014): The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys. vol. 14(19), 10845-10895, https://doi.org/10.5194/acp-14-10845-2014.
  +
* West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., Partridge, D. G., and Kipling, Z. (2014): The importance of vertical velocity variability for estimates of the indirect aerosol effects, Atmos. Chem. Phys., 14, 6369-6393, https:/doi.org/10.5194/acp-14-6369-2014.
   
 
== 2013 ==
 
== 2013 ==

Latest revision as of 16:29, 25 March 2021

List of UKCA Publications

Here is a list of Publications (by year) which use the UKCA Model:

2021

2020

2019

  • Dennison, F., J. Keeble, O. Morgenstern, G. Zeng, N. L. Abraham, and X. Yang (2019), Improvements to stratospheric chemistry in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions, Geosci. Model Dev., 12, 1227-1239, https://doi.org/10.5194/gmd-12-1227-2019.
  • Eichinger, R., and 20 others (2019), The influence of mixing on the stratospheric age of air changes in the 21st century, Atmos. Chem. Phys., 19, 921-940, https://doi.org/10.5194/acp-19-921-2019.
  • Harari, O., C. I. Garfinkel, O. Morgenstern, D. Marsh, D. Kinnison, M. Deushi, P. Jöckel, and F. M. O’Connor (2019), Influence of Artic Stratospheric Ozone on Surface Climate in CCMI models, Atmos. Chem. Phys., to appear.
  • Hakim, Z.Q., et al., Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons - a focus on the Indian subcontinent, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/6437/2019/, 2019.
  • Gillett, Z. E., and 13 others (2019), Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry–climate models, J. Climate, 32, 3131–3151, https://doi.org/10.1175/JCLI-D-18-0273.1
  • Kelly et al., The roles of volatile organic compound deposition and oxidation mechanisms in determining secondary organic aerosol production, a global perspective using the UKCA chemistry-climate model (vn8.4), Geosci. Model Dev., https://gmd.copernicus.org/articles/12/2539/2019/, 2019.
  • Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019.
  • Malavelle, F.F., et al., Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, https://acp.copernicus.org/articles/19/1301/2019/, 2019
  • Marshall, L., J.S. Johnson, G.W. Mann, L.A. Lee, S.S. Dhomse, L.A. Regayre, M. Yoshioka, K.S Carslaw and A. Schmidt (2019): Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation, J. Geophys. Res.: Atmos., vol. 124, https://doi.org/10.1029/2018JD028675.
  • McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z
  • Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516.
  • Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019.
  • Sellar, A., C. G. Jones, J. P. Mulcahy, Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M. et al. (2019): "UKESM1: Description and evaluation of the U.K. Earth System Model", J. Adv. Modeling Earth Sys., vol. 11, issue 12, 4513-4558, https://doi.org/10.1029/2019MS001739
  • Shi et al., Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/7519/2019/, 2019.
  • SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/.
  • Turnock et al., The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082067, 2019.
  • Turnock et al., The impact of climate mitigation measures on near term climate forcers, Environ. Res. Lett., https://iopscience.iop.org/article/10.1088/1748-9326/ab4222, 2019.
  • Turnock et al., 300 years of tropospheric ozone changes using CMIP6 scenarios with a parameterised approach, Atmos. Environ., https://www.sciencedirect.com/science/article/pii/S1352231019304443?via%3Dihub, 2019.
  • Walters et al., The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., https://gmd.copernicus.org/articles/12/1909/2019/gmd-12-1909-2019.html, 2019.
  • Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019.
  • Yoshioka et al., Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and their Radiative Forcing, J. Adv. Modeling Earth Sys., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001628, 2019.

2018

  • Arnold, S.R., et al., Simulated Global Climate Response to Tropospheric Ozone-Induced Changes in Plant Transpiration, Geophys. Res Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL079938, 2018.
  • Ayarzagüena, B., and 26 others (2018), No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277-11287, https://doi.org/10.5194/acp-18-11277-2018.
  • Dhomse, S. S., and 46 others (2018), Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409-8438, doi:10.5194/acp-18-8409-2018, 2018.
  • Dietmüller, S., and 22 others (2018), Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Atmos. Chem. Phys., 18, 6699-6720, doi:10.5194/acp-18-6699-2018.
  • Hamilton, D., et al., Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing, Nature Comms., https://www.nature.com/articles/s41467-018-05592-9, 2018.
  • Kelly et al., The impact of biogenic, anthropogenic, and biomass burning emissions on regional and seasonal variations in secondary organic aerosol concentrations, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/7393/2018/, 2018.
  • Liang, C.-K., et al., HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys, https://acp.copernicus.org/articles/18/10497/2018/, 2018.
  • Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018.
  • Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035.
  • Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018.
  • Mulcahy, J.P., C. Jones, A. Sellar, B. Johnson, I. A. Boutle, A. Jones, T. Andrews, S. T. Rumbold, J. Mollard, N. Bellouin, C. E. Johnson et al. (2018): Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, J. Adv. Mod. Earth Systems, 10, 2786-2805, https://doi.org/10.1029/2018MS001464.
  • Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018
  • Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018.
  • Timmreck, C., Mann, G.W., Aquila, V., Hommel, R., Lee, L.A., Schmidt, A., Bruehl, C., Carl, S. et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., vol. 11, 2581-2608, https://doi.org/10.5194/gmd-11-2581-2018, 2018.
  • Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978.
  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.

2017

  • Anderson, D. C., J. M. Nicely, G. M. Wolfe, T. F. Hanisco, R. J. Salawitch, T. P. Canty et al. (2017): Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, 11,201–11,226 https://doi.org/10.1002/2016JD026121.
  • Brooke, J. S. A., Feng, W., Carillo-Sanchez, J. D., Mann, G. W., James, A. D., Bardeen, C. G. et al. (2017): Meteoric smoke deposition in the polar regions: A comparison of measurements with global atmospheric models, J. Geophys. Res.: Atmos., 122, 11,112–11,130, https://doi.org/10.1002/2017JD027143.
  • Butt, E. W., S. T. Turnock, R. Rigby, C. L. Reddington, M. Yoshioka, J. S. Johnson, L. A. Regayre et al. (2017): Global and regional trends in particulate air pollution and attributable health burden over the past 50 years, Environ. Res. Lett., vol. 12, no. 10, https://doi.org/10.1088/1748-9326/aa87be.
  • Dennison, F., McDonald, A., and Morgenstern, O. (2017): The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, https://doi.org/10.5194/acp-17-14075-2017.
  • Hardiman, S. C., Butchart, N., O'Connor, F. M. and Rumbold, S. (2017): The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev., 10, 1209-1232, https://doi.org/10.5194/gmd-10-1209-2017.
  • Hopcroft, P. O., P. J. Valdes, F. M. O'Connor, Kaplan, J. O. and Beerling, D. J. (2017): Understanding the glacial atmospheric methane cycle, 8, 14383, https://doi.org/10.1038/ncomms14383.
  • Liang, Q., M. P. Chipperfield, E. L. Fleming, N. L. Abraham, P. Braesicke, J. B. Burkholder et al. (2017): Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, https://doi.org/10.1002/2017JD026926.
  • Malavelle, F. F., J. M. Haywood, A. Jones, A. Gettelman, L. Clarisse, S. Bauduin, R. P. Allen et al. (2017): Strong constraints on aerosol-cloud interactions from volcanic eruptions, Nature, 546, 485-491, https://doi.org/10.1038/nature22974.
  • Morgenstern, O., M. I. Hegglin, E. Rozanov, F. M. O'Connor, N. L. Abraham, H. Akiyoshi, A. T. Archibald, S. Bekki et al. (2017): Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639-671, https://doi.org/10.5194/gmd-10-639-2017.
  • Pannullo, F., D. Lee, L. Neal, M. Dalvi, P. Agnew, F. M. O'Connor, S. Mukhopadhyay, S. Sahu and C. Sarran (2017): Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, Environ. Health, vol. 16, no. 19 https://doi.org/10.1186/s12940-017-0237-1.
  • Planche, C., G. W. Mann, K. S. Carslaw, M. Dalvi, J. H. Marsham and P. R. Field (2017): Spatial and temporal CCN variations in convection-permitting aerosol microphysics simulations in an idealised marine tropical domain, Atmos. Chem. Phys., 17, 3371-3384, https://doi.org/10.5194/acp-17-3371-2017.
  • Reddington, C., K. S. Carslaw, P. Stier, N. Schutgens, H. Coe, D. Liu, J. Allan, J. Browse, K. J. Pringle, L. A. Lee et al. (2017): The global aerosol synthesis and science project (GASSP): Measurements and modelling to reduce uncertainty, Bull. Amer. Meteorol. Soc., 98, 1857-1877, https://doi.org/10.1175/BAMS-D-15-00317.1.
  • Son, S.-W., B.-R. Han, C. I. Garfinkel, S.-Y. Kim, R. Park, N. L. Abraham, H. Akiyoshi, A. T. Archibald et al. (2017): Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024, https://doi.org/10.1088/1748-9326/aabf21.
  • Zhang, J., W. Tian, F. Xie, M. P. Chipperfield, W. Feng, S.-W. Son, N. L. Abraham, A. T. Archibald, S. Bekki et al. (2017): Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Comms., 9, 206, https://doi.org/10.1038/s41467-017-02565-2.
  • Zeng, G., O. Morgenstern, H. Shiona, A. J. Thomas, R. R. Querel and S. E. Nichol (2017): Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, https://doi.org/10.5194/acp-17-10495-2017.

2016

  • Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016): Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905–3925, https://doi.org/10.1002/2015JC011286.
  • Benduhn, F., G. W. Mann, Pringle, K. J., Topping, D. O., McFiggans, G. and K. S. Carslaw (2016): Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0: description, evaluation and first global modelling results, Geosci. Mod. Dev., 9, 3875-3906, https://doi.org/10.5194/gmd-9-3875-2016.
  • Dennison, F. W., A. J. McDonald, and O. Morgenstern (2016): The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, https://doi.org/10.1002/2016JD025033.
  • Dunne, E. M., H. Gordon, A. Kürten, J. Almeida, J. Duplissy, C. Williamson, I. K. Ortega, K. J. Pringle et al. (2016): Global atmospheric particle formation from CERN CLOUD measurements, Science, vol. 354, 6316, 1119-1124, https://doi.org/10.1126/science.aaf2649.
  • Johnson, B. T., J. M. Haywood, J. M. Langridge, E. Darbyshire, W. T. Morgan, K. Szpek, J. K. Brooke, F. Marenco, H. Coe et al. (2016): Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, Atmos. Chem. Phys., 16, 14657-14685, https://doi.org/10.5194/acp-16-14657-2016.
  • Kapadia, Z. Z., D. V. Spracklen, S. R. Arnold, D. J. Borman, G. W. Mann, K. J. Pringle, S. A. Monks et al. (2016): Impacts of aviation fuel sulfur content on climate and human health, Atmos. Chem. Phys., 16, 10521-10541, https://doi.org/10.5194/acp-16-10521-2016.
  • Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T. et al. (2015): What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II, Atmos. Chem. Phys., 16, 2765-2783, http://doi.org/10.5194/acp-16-2221-2016.
  • López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016): Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, https://doi.org/10.5194/acp-16-14599-2016.
  • Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067545.
  • Schmidt A., R. A. Skeffington, T. Thordarson, S. Self, P. M. Forster, A. Rap, A. Ridgwell, D. Fowler, B. M. Wilson, G. W. Mann, P. B. Wignall and K. S. Carslaw (2016): Selective environmental stress from sulphur emitted by continental flood basalt eruptions, Nature Geoscience, vol. 9, 77-82, https://doi.org/10.1038/NGEO2588.
  • Stone, K. A., O. Morgenstern, D. J. Karoly, A. R. Klekociuk, W. J. French, N. L. Abraham, and R. Schofield (2016): Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere, Atmos. Chem. Phys., 16, 2401-2415, doi:10.5194/acp-16-2401-2016.
  • Turnock, S. T., E. W. Butt, T. B. Richardson, G. W. Mann, C. L. Reddington, P. M. Forster, J. Haywood et al. (2016): The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate, Env. Res. Lett., 11, https://doi.org/10.1088/1748-9326/11/2/024010.
  • Zanchettin, D., M. Khodri, C. Timmreck, M. Toohey, A. Schmidt, E. P. Gerber, G. Hegerl, A. Robock et al. (2016): The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Mod. Dev., 9, 2701-2719, https://doi.org/10.5194/gmd-9-2701-2016
  • Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S. et al. (2016): On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models, Atmos. Chem. Phys., 16, 2765-2783, https://doi.org/10.5194/acp-16-2765-2016.

2015

  • Dennison, F., A. J. McDonald, and O. Morgenstern (2015), The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling, J. Geophys. Res., Atmos., 120, 6305–6312, http://doi.org/10.1002/2014JD023009.
  • Dhomse, S. S., M. P. Chipperfield, W. Feng, R. Hossaini, G. W. Mann and M. L. Santee (2015): Revisiting the hemispheric asymmetry in mid-latitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophys. Res. Lett., vol. 42(8), 3038-3047, https://doi.org/10.1002/2015GL063052.
  • Giordano, L., D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel et al. (2015): Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2, Atmos. Env., vol. 115, 371-388, https://doi.org/10.1016/j.atmosenv.2015.02.034.
  • Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. (2015): Wet scavenging limits the detection of aerosol effects on precipitation, Atmos. Chem. Phys., 15, 7557-7570, https://doi.org/10.5194/acp-15-7557-2015.
  • Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners et al. (2015): Processes controlling tropical tropopause temperature and stratospheric water vapour, J. Climate, 28, 6516-6535, https://doi.org/10.1175/JCLI-D-15-0075.1
  • Mann, G. W., Dhomse, S., Deshler T., Timmreck, C, Schmidt A, Neely, R and Thomason, L. (2015): Evolving particle size is the key to improved volcanic forcings, Past Global Change, 23(2), 52-53, https://doi.org/10.22498/pages.23.2.52
  • Planche C., J. H. Marsham, P. R. Field, K. S. Carslaw, A. A. Hill, G. W. Mann and B. J. Shipway (2015): Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model, Q. J. Roy. Meteorol. Soc., vol. 141(691), 2032-2044, https://doi.org/10.1002/qj.2497.
  • Pope, R. J., M. P. Chipperfield, N. H. Savage, C. Ordóñez, L. S. Neal, L. A. Lee, S. S. Dhomse, N. A. D. Richards and T. D. Keslake (2015): Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions, Atmos. Chem. Phys., 15, 5611-5626, https://doi.org/10.5194/acp-15-5611-2015.
  • Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. (2015): The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2, Atmos. Chem. Phys., 15, 11201-11215, https://doi.org/10.5194/acp-15-11201-2015.
  • Regayre, L. A., K. J. Pringle, L. A. Lee, A. Rap, J. Browse, G. W. Mann, C. L. Reddington, K. S. Carslaw, B. B. B. Booth and M. T. Woodhouse (2015): The climatic importance of uncertainties in regional aerosol-cloud radiative forcings over recent decades, J. Climate, vol. 28(17), 6589-6607, http://doi.org/10.1175/JCLI-D-15-0127.1
  • Scott, C. E., D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster et al. (2015): Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 15, 12989-13001, https://doi.org/10.5194/acp-15-12989-2015.
  • Turnock, S. T., D. V. Spracklen. K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson et al. (2015): Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009, Atmos. Chem. Phys., 15, 9477-9500, https://doi.org/doi:10.5194/acp-15-9477-2015.
  • Zeng, G., J. E. Williams, J. A. Fisher, L. K. Emmons, N. B. Jones, O. Morgenstern, et. al. (2015), Multi-model simulation of CO and HCHO in the Southern Hemisphere: biogenic emissions and model uncertainties, Atmos. Chem. Phys., 15, 7217-7245, doi:10.5194/acp-15-7217-2015.

2014

  • Breider, T. J., M. P. Chipperfield, G. W. Mann, M. T. Woodhouse and K. S. Carslaw (2014): Suppression of CCN formation by bromine chemistry in the remote marine atmosphere, Atmos. Sci. Lett., 16(2), 141-147, https://doi.org/10.1002/asl2.539
  • Browse, J., K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, C. Leck. (2014): The complex response of Arctic aerosol to sea-ice retreat, Atmos. Chem. Phys., 14, 7543-7557, https://doi.org/10.5194/acp-14-7543-2014.
  • Brunner, D., N. Savage, O. Jorba, B. Eder, L. Giordano, A. Badia, A. Balzarini, R. Baró, R. Bianconi, C. Chemel et al. (2014): Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2, Atmos. Env., vol. 115, 470-498, https://doi.org/10.1016/j.atmosenv.2014.12.032.
  • Chipperfield, M.P., Q. Liang, S. E. Strahan, O. Morgenstern, S.S. Dhomse, N.L. Abraham, A.T. Archibald, S. Bekki et al. (2014): Multi-model estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future, J. Geophys. Res. Atmos., 119, 5, 2555-2573, https://doi.org/10.1002/2013JD021097.
  • Dhomse S. S., K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, N. L. Abraham, et al. (2014), Aerosol microphysics simulations of the Mt Pinatubo eruption with the UKCA composition-climate model, Atmos. Chem. Phys., 14, 11221-11246, https://doi.org/10.5194/acp-14-11221-2014.
  • Hayman, G. D., F. M. O'Connor, M. Dalvi, D. B. Clark, C. Huntingford, N. Gedney, C. Prigent, M. Buchwitz, O. Schneising and J. P. Burrows (2014): Comparison of the HadGEM2 climate-chemistry model against SCIAMACHY atmospheric methane columns, Atmos. Chem. Phys., 14, 13257-13280, 2014, https://doi.org/10.5194/acp-14-13257-2014.
  • Im, U., R. Bianconi, E. Solazzo, I. Kioutsioukis, A. Badia, A. Balzarini, R. Baró, R. Bellasio, D. Brunner, C. Chemel et al. (2014): Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone, Atmos. Env., vol. 115, 404-420, https://doi.org/10.1016/j.atmosenv.2014.09.042.
  • Im, U., R. Bianconi, E. Solazzo, I. Kioutsioukis, A. Badia, A. Balzarini, R. Baró, R. Bellasio, D. Brunner, C. Chemel et al. (2014): Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter, Atmos. Env., vol. 115, pp. 421-441, https://doi.org/10.1016/j.atmosenv.2014.08.072.
  • Jiao, C., M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin et al. (2014): An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., vol. 14(5), 2399-2417, https://doi.org/10.5194/acp-14-2399-2014.
  • Mann, G. W., K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee et al. (2014): Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity, Atmos. Chem. Phys. vol. 14(9), 4679-4713, https://doi.org/10.5194/acp-14-4679-2014.
  • Morgenstern, O., G. Zeng, S. M. Dean, M. Joshi, N. L. Abraham, and A. Osprey (2014): Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases, Geophys. Res. Lett., 41, 9050–9057, https://doi.org/10.1002/2014GL062140.
  • Neal, L. S. P. Agnew, S. Moseley, C. Ordóñez, N.H. Savage, M. Tilbee, Application of a statistical post-processing technique to a gridded, operational, air quality forecast, Atmos. Env., vol. 98, 385-393, https://doi.org/10.1016/j.atmosenv.2014.09.004.
  • O'Connor, F. M., C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke, M. Dalvi, G. A. Folberth, M. G. Sanderson et al. (2014), Evaluation of the new UKCA climate-composition model. Part II. The troposphere. Geosci. Model Dev., 7, 41-91, 2014, https://doi.org/10.5194/gmd-7-41-2014.
  • Regayre, L. A., K. J. Pringle, B. B. B. Booth, L. A. Lee, G. W. Mann, J. Browse, M. T. Woodhouse, A. Rap, C. L. Reddington, K. S. Carslaw (2014): Uncertainty in the magnitude of aerosol‐cloud radiative forcing over recent decades, Geophys. Res. Lett. 41(24), 9040-9049, https://doi.org/10.1002/2014GL062029.
  • Scott, C. E., A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen and P. Tunved (2014): The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14(1), 447-470, https://doi.org/10.5194/acp-14-447-2014.
  • Squire, O. J., Archibald, A. T., Abraham, N. L., Beerling, D. J., Hewitt, C. N., Lathière, J., Pike, R. C., Telford, P. J., and Pyle, J. A., Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone, Atmos. Chem. Phys., 14, 1011-1024, http://doi.org/10.5194/acp-14-1011-2014.
  • Stock, Z. S., Russo, M. R., and Pyle, J. A. (2014): Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model, Atmos. Chem. Phys., 14, 3899-3912, https://doi.org/10.5194/acp-14-3899-2014.
  • Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L., Archibald, A. T., Braesicke, P., Pyle, J. A. et al. (2014): Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection, Atmos. Chem. Phys., 14, 6035-6048, https://doi.org/10.5194/acp-14-6035-2014.
  • Tsigaridis K., N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin et al. (2014): The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys. vol. 14(19), 10845-10895, https://doi.org/10.5194/acp-14-10845-2014.
  • West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., Partridge, D. G., and Kipling, Z. (2014): The importance of vertical velocity variability for estimates of the indirect aerosol effects, Atmos. Chem. Phys., 14, 6369-6393, https:/doi.org/10.5194/acp-14-6369-2014.

2013

2012

2011

2010

2009

2008

2007