Difference between revisions of "Publications"

From UKCA
Line 118: Line 118:
   
 
== 2015 ==
 
== 2015 ==
* [http://www.sciencedirect.com/science/article/pii/S1352231015001533 Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2]. L. Giordano, D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel, G. Curci, R. Forkel, P. Jiménez-Guerrero, M. Hirtl, A. Hodzic, L. Honzak, O. Jorba, C. Knote, J.J.P. Kuenen, P.A. Makar, A. Manders-Groot, L. Neal, J.L. Pérez, G. Pirovano, G. Pouliot, R. San José, N. Savage, W. Schröder, R.S. Sokhi, D. Syrakov, A. Torian, P. Tuccella, J. Werhahn, R. Wolke, K. Yahya, R. Žabkar, Y. Zhang, S. Galmarini, Atmospheric Environment, Available online 12 February 2015, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2015.02.034.
+
* Giordano, L., D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel et al. (2015): Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2, Atmos. Env., vol. 115, 371-388, http://dx.doi.org/10.1016/j.atmosenv.2015.02.034.
* [http://www.atmos-chem-phys.net/15/5611/2015/acp-15-5611-2015.html Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions]. Pope, R. J., Chipperfield, M. P., Savage, N. H., Ordóñez, C., Neal, L. S., Lee, L. A., Dhomse, S. S., Richards, N. A. D., and Keslake, T. D. Atmos. Chem. Phys., 15, 5611-5626, doi:10.5194/acp-15-5611-2015, 2015.
+
* Pope, R. J., Chipperfield, M. P., Savage, N. H., Ordóñez, C., Neal, L. S., Lee, L. A., Dhomse, S. S., Richards, N. A. D., and Keslake, T. D. (2015): Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions, Atmos. Chem. Phys., 15, 5611-5626, https://doi.org/10.5194/acp-15-5611-2015.
* [http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-15-0075.1 Processes controlling tropical tropopause temperature and stratospheric water vapour]. Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners, S. F. Milton, C. J. Morcrette, F. M. O'Connor, B. J. Shipway, C. Smith, D. N. Walters, K. D. Williams, N. Wood, N. L. Abraham, J. M. Keeble, A. C. Maycock, J. Thurburn, and M. T. Woodhouse. J. Climate, 28, 6516-6535. doi: http://dx.doi.org/10.1175/JCLI-D-15-0075.1, 2015.
+
* Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners et al. (2015): Processes controlling tropical tropopause temperature and stratospheric water vapour, J. Climate, 28, 6516-6535, https://doi.org/10.1175/JCLI-D-15-0075.1
* [http://www.atmos-chem-phys.net/15/11201/2015/acp-15-11201-2015.html The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2]. Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. Atmos. Chem. Phys., 15, 11201-11215, doi:10.5194/acp-15-11201-2015, 2015.
+
* Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. (2015): The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2, Atmos. Chem. Phys., 15, 11201-11215, https://doi.org/10.5194/acp-15-11201-2015.
* [http://www.atmos-chem-phys.net/15/7557/2015/acp-15-7557-2015.html Wet scavenging limits the detection of aerosol effects on precipitation]. Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. Atmos. Chem. Phys., 15, 7557-7570, doi:10.5194/acp-15-7557-2015, 2015.
+
* Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. (2015): Wet scavenging limits the detection of aerosol effects on precipitation, Atmos. Chem. Phys., 15, 7557-7570, https://doi.org/10.5194/acp-15-7557-2015.
* [http://www.atmos-chem-phys-discuss.net/15/23683/2015/acpd-15-23683-2015.html On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models]. Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S., Takeamura, T., Gettelman, A., Morrison, H., Lee, Y. H., Shindell, D. T., Partridge, D. G., Stier, P., Kipling, Z., and Fu, C. Atmos. Chem. Phys. Discuss., 15, 23683-23729, doi:10.5194/acpd-15-23683-2015, 2015.
 
 
* [http://www.atmos-chem-phys-discuss.net/15/25933/2015/acpd-15-25933-2015.html What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II]. Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen, K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K., and Zhang, K. Atmos. Chem. Phys. Discuss., 15, 25933-25980, doi:10.5194/acpd-15-25933-2015, 2015.
 
* [http://www.atmos-chem-phys-discuss.net/15/25933/2015/acpd-15-25933-2015.html What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II]. Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen, K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K., and Zhang, K. Atmos. Chem. Phys. Discuss., 15, 25933-25980, doi:10.5194/acpd-15-25933-2015, 2015.
 
* Dennison, F., A. J. McDonald, and O. Morgenstern (2015), The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling, J. Geophys. Res., Atmos., 120, 6305–6312, doi:10.1002/2014JD023009.
 
* Dennison, F., A. J. McDonald, and O. Morgenstern (2015), The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling, J. Geophys. Res., Atmos., 120, 6305–6312, doi:10.1002/2014JD023009.

Revision as of 22:50, 17 March 2021

List of UKCA Publications

Here is a list of Publications (by year) which use the UKCA Model:

2021

2020

2019

  • Dennison, F., J. Keeble, O. Morgenstern, G. Zeng, N. L. Abraham, and X. Yang (2019), Improvements to stratospheric chemistry in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions, Geosci. Model Dev., 12, 1227-1239, https://doi.org/10.5194/gmd-12-1227-2019.
  • Eichinger, R., and 20 others (2019), The influence of mixing on the stratospheric age of air changes in the 21st century, Atmos. Chem. Phys., 19, 921-940, https://doi.org/10.5194/acp-19-921-2019.
  • Harari, O., C. I. Garfinkel, O. Morgenstern, D. Marsh, D. Kinnison, M. Deushi, P. Jöckel, and F. M. O’Connor (2019), Influence of Artic Stratospheric Ozone on Surface Climate in CCMI models, Atmos. Chem. Phys., to appear.
  • Hakim, Z.Q., et al., Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons - a focus on the Indian subcontinent, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/6437/2019/, 2019.
  • Gillett, Z. E., and 13 others (2019), Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry–climate models, J. Climate, 32, 3131–3151, https://doi.org/10.1175/JCLI-D-18-0273.1
  • Kelly et al., The roles of volatile organic compound deposition and oxidation mechanisms in determining secondary organic aerosol production, a global perspective using the UKCA chemistry-climate model (vn8.4), Geosci. Model Dev., https://gmd.copernicus.org/articles/12/2539/2019/, 2019.
  • Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019.
  • Malavelle, F.F., et al., Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, https://acp.copernicus.org/articles/19/1301/2019/, 2019
  • Marshall et al., Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation, J. Geophys. Res.: Atmos., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JD028675, 2019.
  • McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z
  • Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516.
  • Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019.
  • Shi et al., Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/7519/2019/, 2019.
  • SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/.
  • Turnock et al., The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082067, 2019.
  • Walters et al., The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., https://gmd.copernicus.org/articles/12/1909/2019/gmd-12-1909-2019.html, 2019.
  • Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019.
  • Yoshioka et al., Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and their Radiative Forcing, J. Adv. Modeling Earth Sys., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001628, 2019.

2018

  • Arnold, S.R., et al., Simulated Global Climate Response to Tropospheric Ozone-Induced Changes in Plant Transpiration, Geophys. Res Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL079938, 2018.
  • Ayarzagüena, B., and 26 others (2018), No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277-11287, https://doi.org/10.5194/acp-18-11277-2018.
  • Dhomse, S. S., and 46 others (2018), Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409-8438, doi:10.5194/acp-18-8409-2018, 2018.
  • Dietmüller, S., and 22 others (2018), Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Atmos. Chem. Phys., 18, 6699-6720, doi:10.5194/acp-18-6699-2018.
  • Hamilton, D., et al., Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing, Nature Comms., https://www.nature.com/articles/s41467-018-05592-9, 2018.
  • Kelly et al., The impact of biogenic, anthropogenic, and biomass burning emissions on regional and seasonal variations in secondary organic aerosol concentrations, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/7393/2018/, 2018.
  • Liang, C.-K., et al., HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys, https://acp.copernicus.org/articles/18/10497/2018/, 2018.
  • Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018.
  • Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035.
  • Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, doi:10.5194/acp-18-1091-2018.
  • Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, doi:10.5194/acp-18-7217-2018
  • Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018.
  • Timmreck et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., https://gmd.copernicus.org/articles/11/2581/2018/, 2018.
  • Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978.
  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.

2017

  • Anderson, D. C., J. M. Nicely, G. M. Wolfe, T. F. Hanisco, R. J. Salawitch, T. P. Canty et al. (2017): Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, 11,201–11,226 https://doi.org/10.1002/2016JD026121.
  • Brooke, J. S. A., Feng, W., Carillo-Sanchez, J. D., Mann, G. W., James, A. D., Bardeen, C. G. et al. (2017): Meteoric smoke deposition in the polar regions: A comparison of measurements with global atmospheric models, J. Geophys. Res.: Atmos., 122, 11,112–11,130, https://doi.org/10.1002/2017JD027143.
  • Butt, E. W., S. T. Turnock, R. Rigby, C. L. Reddington, M. Yoshioka, J. S. Johnson, L. A. Regayre et al. (2017): Global and regional trends in particulate air pollution and attributable health burden over the past 50 years, Environ. Res. Lett., vol. 12, no. 10, https://doi.org/10.1088/1748-9326/aa87be.
  • Dennison, F., McDonald, A., and Morgenstern, O. (2017): The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, https://doi.org/10.5194/acp-17-14075-2017.
  • Hardiman, S. C., Butchart, N., O'Connor, F. M. and Rumbold, S. (2017): The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev., 10, 1209-1232, https://doi.org/10.5194/gmd-10-1209-2017.
  • Hopcroft, P. O., P. J. Valdes, F. M. O'Connor, Kaplan, J. O. and Beerling, D. J. (2017): Understanding the glacial atmospheric methane cycle, 8, 14383, https://doi.org/10.1038/ncomms14383.
  • Liang, Q., M. P. Chipperfield, E. L. Fleming, N. L. Abraham, P. Braesicke, J. B. Burkholder et al. (2017): Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, https://doi.org/10.1002/2017JD026926.
  • Malavelle, F. F., J. M. Haywood, A. Jones, A. Gettelman, L. Clarisse, S. Bauduin, R. P. Allen et al. (2017): Strong constraints on aerosol-cloud interactions from volcanic eruptions, Nature, 546, 485-491, https://doi.org/10.1038/nature22974.
  • Morgenstern, O., M. I. Hegglin, E. Rozanov, F. M. O'Connor, N. L. Abraham, H. Akiyoshi, A. T. Archibald, S. Bekki et al. (2017): Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639-671, https://doi.org/10.5194/gmd-10-639-2017.
  • Pannullo, F., D. Lee, L. Neal, M. Dalvi, P. Agnew, F. M. O'Connor, S. Mukhopadhyay, S. Sahu and C. Sarran (2017): Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, Environ. Health, vol. 16, no. 19 https://doi.org/10.1186/s12940-017-0237-1.
  • Planche, C., G. W. Mann, K. S. Carslaw, M. Dalvi, J. H. Marsham and P. R. Field (2017): Spatial and temporal CCN variations in convection-permitting aerosol microphysics simulations in an idealised marine tropical domain, Atmos. Chem. Phys., 17, 3371-3384, https://doi.org/10.5194/acp-17-3371-2017.
  • Reddington, C., K. S. Carslaw, P. Stier, N. Schutgens, H. Coe, D. Liu, J. Allan, J. Browse, K. J. Pringle, L. A. Lee et al. (2017): The global aerosol synthesis and science project (GASSP): Measurements and modelling to reduce uncertainty, Bull. Amer. Meteorol. Soc., 98, 1857-1877, https://doi.org/10.1175/BAMS-D-15-00317.1.
  • Son, S.-W., B.-R. Han, C. I. Garfinkel, S.-Y. Kim, R. Park, N. L. Abraham, H. Akiyoshi, A. T. Archibald et al. (2017): Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024, https://doi.org/10.1088/1748-9326/aabf21.
  • Zhang, J., W. Tian, F. Xie, M. P. Chipperfield, W. Feng, S.-W. Son, N. L. Abraham, A. T. Archibald, S. Bekki et al. (2017): Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Comms., 9, 206, https://doi.org/10.1038/s41467-017-02565-2.
  • Zeng, G., O. Morgenstern, H. Shiona, A. J. Thomas, R. R. Querel and S. E. Nichol (2017): Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, https://doi.org/10.5194/acp-17-10495-2017.

2016

  • Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016): Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905–3925, https://doi.org/10.1002/2015JC011286.
  • Benduhn, F., G. W. Mann, Pringle, K. J., Topping, D. O., McFiggans, G. and K. S. Carslaw (2016): Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0: description, evaluation and first global modelling results, Geosci. Mod. Dev., 9, 3875-3906, https://doi.org/10.5194/gmd-9-3875-2016.
  • Dennison, F. W., A. J. McDonald, and O. Morgenstern (2016): The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, https://doi.org/10.1002/2016JD025033.
  • Dunne, E. M., H. Gordon, A. Kürten, J. Almeida, J. Duplissy, C. Williamson, I. K. Ortega, K. J. Pringle et al. (2016): Global atmospheric particle formation from CERN CLOUD measurements, Science, vol. 354, 6316, 1119-1124, https://doi.org/10.1126/science.aaf2649.
  • Johnson, B. T., J. M. Haywood, J. M. Langridge, E. Darbyshire, W. T. Morgan, K. Szpek, J. K. Brooke, F. Marenco, H. Coe et al. (2016): Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, Atmos. Chem. Phys., 16, 14657-14685, https://doi.org/10.5194/acp-16-14657-2016.
  • Kapadia, Z. Z., D. V. Spracklen, S. R. Arnold, D. J. Borman, G. W. Mann, K. J. Pringle, S. A. Monks et al. (2016): Impacts of aviation fuel sulfur content on climate and human health, Atmos. Chem. Phys., 16, 10521-10541, https://doi.org/10.5194/acp-16-10521-2016.
  • López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016): Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, https://doi.org/10.5194/acp-16-14599-2016.
  • Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067545.
  • Schmidt A., R. A. Skeffington, T. Thordarson, S. Self, P. M. Forster, A. Rap, A. Ridgwell, D. Fowler, B. M. Wilson, G. W. Mann, P. B. Wignall and K. S. Carslaw (2016): Selective environmental stress from sulphur emitted by continental flood basalt eruptions, Nature Geoscience, vol. 9, 77-82, https://doi.org/10.1038/NGEO2588.
  • Stone, K. A., O. Morgenstern, D. J. Karoly, A. R. Klekociuk, W. J. French, N. L. Abraham, and R. Schofield (2016): Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere, Atmos. Chem. Phys., 16, 2401-2415, doi:10.5194/acp-16-2401-2016.
  • Turnock, S. T., E. W. Butt, T. B. Richardson, G. W. Mann, C. L. Reddington, P. M. Forster, J. Haywood et al. (2016): The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate, Env. Res. Lett., 11, https://doi.org/10.1088/1748-9326/11/2/024010.
  • Zanchettin, D., M. Khodri, C. Timmreck, M. Toohey, A. Schmidt, E. P. Gerber, G. Hegerl, A. Robock et al. (2016): The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Mod. Dev., 9, 2701-2719, https://doi.org/10.5194/gmd-9-2701-2016

2015

  • Giordano, L., D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel et al. (2015): Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2, Atmos. Env., vol. 115, 371-388, http://dx.doi.org/10.1016/j.atmosenv.2015.02.034.
  • Pope, R. J., Chipperfield, M. P., Savage, N. H., Ordóñez, C., Neal, L. S., Lee, L. A., Dhomse, S. S., Richards, N. A. D., and Keslake, T. D. (2015): Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions, Atmos. Chem. Phys., 15, 5611-5626, https://doi.org/10.5194/acp-15-5611-2015.
  • Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners et al. (2015): Processes controlling tropical tropopause temperature and stratospheric water vapour, J. Climate, 28, 6516-6535, https://doi.org/10.1175/JCLI-D-15-0075.1
  • Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. (2015): The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2, Atmos. Chem. Phys., 15, 11201-11215, https://doi.org/10.5194/acp-15-11201-2015.
  • Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. (2015): Wet scavenging limits the detection of aerosol effects on precipitation, Atmos. Chem. Phys., 15, 7557-7570, https://doi.org/10.5194/acp-15-7557-2015.
  • What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen, K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K., and Zhang, K. Atmos. Chem. Phys. Discuss., 15, 25933-25980, doi:10.5194/acpd-15-25933-2015, 2015.
  • Dennison, F., A. J. McDonald, and O. Morgenstern (2015), The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling, J. Geophys. Res., Atmos., 120, 6305–6312, doi:10.1002/2014JD023009.
  • Zeng, G., J. E. Williams, J. A. Fisher, L. K. Emmons, N. B. Jones, O. Morgenstern, et. al. (2015), Multi-model simulation of CO and HCHO in the Southern Hemisphere: biogenic emissions and model uncertainties, Atmos. Chem. Phys., 15, 7217-7245, doi:10.5194/acp-15-7217-2015.

2014

2013

2012

2011

2010

2009

2008

2007