Difference between revisions of "Publications"

From UKCA
Line 87: Line 87:
   
 
== 2017 ==
 
== 2017 ==
* Son, S.-W., and 28 others (2017), Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024.
 
* Zhang, J., and 25 others (2017), Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Communications, 9, 206, doi:10.1038/s41467-017-02565-2.
 
* Zeng, G., Morgenstern, O., Shiona, H., Thomas, A. J., Querel, R. R., and Nichol, S. E.: Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, doi:10.5194/acp-17-10495-2017, 2017.
 
* Liang, Q., and 27 others (2017), Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, doi:10.1002/2017JD026926.
 
 
* Anderson, D., and 37 others (2017), Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026121.
 
* Anderson, D., and 37 others (2017), Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026121.
 
* Dennison, F., McDonald, A., and Morgenstern, O.: The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, doi:10.5194/acp-17-14075-2017, 2017.
 
* Dennison, F., McDonald, A., and Morgenstern, O.: The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, doi:10.5194/acp-17-14075-2017, 2017.
 
* Hardiman et al., The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, [http://www.geosci-model-dev.net/10/1209/2017/ Geosci. Model Dev.], 10, 1209-1232, 2017.
  +
* Hopcroft et al., Understanding the glacial atmospheric methane cycle, [http://www.nature.com/articles/ncomms14383 Nature Comms.], 8, 14383, doi:10.1038/ncomms14383, 2017.
 
* Liang, Q., and 27 others (2017), Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, doi:10.1002/2017JD026926.
 
* Malavelle et al., Evidence cloud liquid water path is invariant in Aerosol-Cloud Interactions, [http://www.nature.com/nature/journal/v546/n7659/full/nature22974.html Nature], 546, 485-491, 2017.
 
* Morgenstern, O., and 37 others (2017), Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), [http://www.geosci-model-dev.net/10/639/2017/ Geosci. Model Dev.], 10, 639-671, 2017.
 
* Morgenstern, O., and 37 others (2017), Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), [http://www.geosci-model-dev.net/10/639/2017/ Geosci. Model Dev.], 10, 639-671, 2017.
* Understanding the glacial atmospheric methane cycle, P.O. Hopcroft, P.J. Valdes, F.M. O'Connor, J.O. Kaplan, and D.J. Beerling, [http://www.nature.com/articles/ncomms14383 Nature Comms.], 8, 14383, doi:10.1038/ncomms14383, 2017.
+
* Pannullo et al., Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, [http://ehjournal.biomedcentral.com/articles/10.1186/s12940-017-0237-1 Environ. Health], DOI:10.1186/s12940-017-0237-1, 2017.
 
* Son, S.-W., and 28 others (2017), Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024.
* The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, S. C. Hardiman, N. Butchart, F. M. O'Connor, and S.T. Rumbold, [http://www.geosci-model-dev.net/10/1209/2017/ Geosci. Model Dev.], 10, 1209-1232, 2017.
 
 
* Zhang, J., and 25 others (2017), Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Communications, 9, 206, doi:10.1038/s41467-017-02565-2.
* Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, F. Pannullo, D. Lee, L. Neal, M. Dalvi, P. Agnew, F. M. O'Connor, S. Mukhopadhyay, S. Sahu, and C. Sarran, [http://ehjournal.biomedcentral.com/articles/10.1186/s12940-017-0237-1 Environ. Health], DOI:10.1186/s12940-017-0237-1, 2017.
 
 
* Zeng, G., Morgenstern, O., Shiona, H., Thomas, A. J., Querel, R. R., and Nichol, S. E.: Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, doi:10.5194/acp-17-10495-2017, 2017.
* Evidence cloud liquid water path is invariant in Aerosol-Cloud Interactions, F. Malavelle, J. Haywood, et al., including M. Dalvi and F.M. O'Connor, [http://www.nature.com/nature/journal/v546/n7659/full/nature22974.html Nature], 546, 485-491, 2017.
 
   
 
== 2016 ==
 
== 2016 ==

Revision as of 15:03, 17 March 2021

List of UKCA Publications

Here is a list of Publications (by year) which use the UKCA Model:

2021

2020

2019

  • Dennison, F., J. Keeble, O. Morgenstern, G. Zeng, N. L. Abraham, and X. Yang (2019), Improvements to stratospheric chemistry in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions, Geosci. Model Dev., 12, 1227-1239, https://doi.org/10.5194/gmd-12-1227-2019.
  • Eichinger, R., and 20 others (2019), The influence of mixing on the stratospheric age of air changes in the 21st century, Atmos. Chem. Phys., 19, 921-940, https://doi.org/10.5194/acp-19-921-2019.
  • Harari, O., C. I. Garfinkel, O. Morgenstern, D. Marsh, D. Kinnison, M. Deushi, P. Jöckel, and F. M. O’Connor (2019), Influence of Artic Stratospheric Ozone on Surface Climate in CCMI models, Atmos. Chem. Phys., to appear.
  • Hakim, Z.Q., et al., Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons - a focus on the Indian subcontinent, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/6437/2019/, 2019.
  • Gillett, Z. E., and 13 others (2019), Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry–climate models, J. Climate, 32, 3131–3151, https://doi.org/10.1175/JCLI-D-18-0273.1
  • Kelly et al., The roles of volatile organic compound deposition and oxidation mechanisms in determining secondary organic aerosol production, a global perspective using the UKCA chemistry-climate model (vn8.4), Geosci. Model Dev., https://gmd.copernicus.org/articles/12/2539/2019/, 2019.
  • Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019.
  • Malavelle, F.F., et al., Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, https://acp.copernicus.org/articles/19/1301/2019/, 2019
  • Marshall et al., Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation, J. Geophys. Res.: Atmos., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JD028675, 2019.
  • McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z
  • Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516.
  • Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019.
  • Shi et al., Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/7519/2019/, 2019.
  • SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/.
  • Turnock et al., The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082067, 2019.
  • Walters et al., The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., https://gmd.copernicus.org/articles/12/1909/2019/gmd-12-1909-2019.html, 2019.
  • Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019.
  • Yoshioka et al., Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and their Radiative Forcing, J. Adv. Modeling Earth Sys., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001628, 2019.

2018

  • Arnold, S.R., et al., Simulated Global Climate Response to Tropospheric Ozone-Induced Changes in Plant Transpiration, Geophys. Res Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL079938, 2018.
  • Ayarzagüena, B., and 26 others (2018), No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277-11287, https://doi.org/10.5194/acp-18-11277-2018.
  • Dhomse, S. S., and 46 others (2018), Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409-8438, doi:10.5194/acp-18-8409-2018, 2018.
  • Dietmüller, S., and 22 others (2018), Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Atmos. Chem. Phys., 18, 6699-6720, doi:10.5194/acp-18-6699-2018.
  • Hamilton, D., et al., Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing, Nature Comms., https://www.nature.com/articles/s41467-018-05592-9, 2018.
  • Kelly et al., The impact of biogenic, anthropogenic, and biomass burning emissions on regional and seasonal variations in secondary organic aerosol concentrations, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/7393/2018/, 2018.
  • Liang, C.-K., et al., HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys, https://acp.copernicus.org/articles/18/10497/2018/, 2018.
  • Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018.
  • Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035.
  • Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, doi:10.5194/acp-18-1091-2018.
  • Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, doi:10.5194/acp-18-7217-2018
  • Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018.
  • Timmreck et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., https://gmd.copernicus.org/articles/11/2581/2018/, 2018.
  • Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978.
  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.

2017

  • Anderson, D., and 37 others (2017), Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026121.
  • Dennison, F., McDonald, A., and Morgenstern, O.: The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, doi:10.5194/acp-17-14075-2017, 2017.
  • Hardiman et al., The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev., 10, 1209-1232, 2017.
  • Hopcroft et al., Understanding the glacial atmospheric methane cycle, Nature Comms., 8, 14383, doi:10.1038/ncomms14383, 2017.
  • Liang, Q., and 27 others (2017), Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, doi:10.1002/2017JD026926.
  • Malavelle et al., Evidence cloud liquid water path is invariant in Aerosol-Cloud Interactions, Nature, 546, 485-491, 2017.
  • Morgenstern, O., and 37 others (2017), Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639-671, 2017.
  • Pannullo et al., Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, Environ. Health, DOI:10.1186/s12940-017-0237-1, 2017.
  • Son, S.-W., and 28 others (2017), Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024.
  • Zhang, J., and 25 others (2017), Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Communications, 9, 206, doi:10.1038/s41467-017-02565-2.
  • Zeng, G., Morgenstern, O., Shiona, H., Thomas, A. J., Querel, R. R., and Nichol, S. E.: Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, doi:10.5194/acp-17-10495-2017, 2017.

2016

  • Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016), Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905–3925, doi:10.1002/2015JC011286.
  • Dennison, F. W., A. J. McDonald, and O. Morgenstern (2016), The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025033.
  • López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016) Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, doi:10.5194/acp-16-14599-2016.
  • Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, doi:10.1002/2015GL067545.
  • Stone, K. A., Morgenstern, O., Karoly, D. J., Klekociuk, A. R., French, W. J., Abraham, N. L., and Schofield, R.: Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere, Atmos. Chem. Phys., 16, 2401-2415, doi:10.5194/acp-16-2401-2016, 2016.

2015

2014

2013

2012

2011

2010

2009

2008

2007