Difference between revisions of "Publications"

From UKCA
Line 7: Line 7:
   
 
== 2020 ==
 
== 2020 ==
 
* Ahamad et al., Ozone Trends from Two Decades of Ground Level Observation in Malaysia, Atmosphere, https://www.mdpi.com/2073-4433/11/7/755, 2020.
 
* Allen et al., Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9641/2020/, 2020.
 
* Allen et al., Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9641/2020/, 2020.
 
* Archibald et al., Description and Evaluation of the UKCA stratosphere-troposphere chemistry (UKCA StratTrop) as implemented in UKESM1, Geosci. Model Dev., https://gmd.copernicus.org/articles/13/1223/2020/, 2020.
 
* Archibald et al., Description and Evaluation of the UKCA stratosphere-troposphere chemistry (UKCA StratTrop) as implemented in UKESM1, Geosci. Model Dev., https://gmd.copernicus.org/articles/13/1223/2020/, 2020.
 
* Archibald et al., On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms, Phil. Trans. Royal Soc., https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0329, 2020.
 
* Archibald et al., On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms, Phil. Trans. Royal Soc., https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0329, 2020.
 
* Griffiths et al., On the Changing Role of the Stratosphere on the Tropospheric Ozone Budget: 1979-2010, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019GL086901, 2020.
 
* Heimann et al., Methane Emissions in a Chemistry-Climate Model: Feedbacks and Climate Response, J. Adv. Earth Sys. Modeling, https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019MS002019, 2020.
 
* Keeble et al., Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/7153/2020/, 2020.
 
* Morgenstern et al., Reappraisal of the climate impacts of ozone-depleting substances, Geophys. Res. Letts., https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL088295, 2020.
 
* Morgenstern et al., Reappraisal of the climate impacts of ozone-depleting substances, Geophys. Res. Letts., https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020GL088295, 2020.
 
* Mulcahy et al., Description and evaluation of aerosol in UKESM1 and HadGEM-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., https://gmd.copernicus.org/articles/13/6383/2020/, 2020.
 
* Mulcahy et al., Description and evaluation of aerosol in UKESM1 and HadGEM-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., https://gmd.copernicus.org/articles/13/6383/2020/, 2020.
 
* Robson et al., The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6, J. Adv. Earth Sys. Modeling, https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020MS002126, 2020.
 
* Sellar et al., Implementation of UK Earth system models for CMIP6, J. Adv. Modelling Earth Sys., https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019MS001946, 2020.
 
* Sellar et al., Implementation of UK Earth system models for CMIP6, J. Adv. Modelling Earth Sys., https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019MS001946, 2020.
 
* Seo et al., The Impacts of Aerosol Emissions on Historical Climate in UKESM1, Atmosphere, https://www.mdpi.com/2073-4433/11/10/1095, 2020.
 
* Seo et al., The Impacts of Aerosol Emissions on Historical Climate in UKESM1, Atmosphere, https://www.mdpi.com/2073-4433/11/10/1095, 2020.
Line 18: Line 23:
 
* Stevenson et al., Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/12905/2020/, 2020.
 
* Stevenson et al., Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/12905/2020/, 2020.
 
* Turnock et al., Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/14547/2020/, 2020.
 
* Turnock et al., Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/14547/2020/, 2020.
 
* Weber et al., Minimal Climate Impacts From Short-Lived Climate Forcers Following Emission Reductions Related to the COVID-19 Pandemic, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020GL090326, 2020.
   
 
* Methane Emissions in a Chemistry-Climate Model: Feedbacks and Climate Response, Heimann et al., J. Adv. Earth Sys. Modeling, https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019MS002019, 2020.
 
* The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6, Robson et al., J. Adv. Earth Sys. Modeling, https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020MS002126, 2020.
 
* Ozone Trends from Two Decades of Ground Level Observation in Malaysia, Ahamad et al., Atmosphere, https://www.mdpi.com/2073-4433/11/7/755, 2020.
 
* Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery, Keeble et al., Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/7153/2020/, 2020.
 
* On the Changing Role of the Stratosphere on the Tropospheric Ozone Budget: 1979-2010, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019GL086901, 2020.
 
* Minimal Climate Impacts From Short-Lived Climate Forcers Following Emission Reductions Related to the COVID-19 Pandemic, Weber et al., Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020GL090326, 2020.
 
 
* CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/10889/2020/, 2020.
 
* CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/10889/2020/, 2020.
 
* Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence, Amos et al., Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9961/2020, 2020.
 
* Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence, Amos et al., Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9961/2020, 2020.

Revision as of 13:45, 10 March 2021

List of UKCA Publications

Here is a list of Publications (by year) which use the UKCA Model:

2021

  • A.N. Other ...

2020

2019

  • Dennison, F., J. Keeble, O. Morgenstern, G. Zeng, N. L. Abraham, and X. Yang (2019), Improvements to stratospheric chemistry in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions, Geosci. Model Dev., 12, 1227-1239, https://doi.org/10.5194/gmd-12-1227-2019.
  • Eichinger, R., and 20 others (2019), The influence of mixing on the stratospheric age of air changes in the 21st century, Atmos. Chem. Phys., 19, 921-940, https://doi.org/10.5194/acp-19-921-2019.
  • Harari, O., C. I. Garfinkel, O. Morgenstern, D. Marsh, D. Kinnison, M. Deushi, P. Jöckel, and F. M. O’Connor (2019), Influence of Artic Stratospheric Ozone on Surface Climate in CCMI models, Atmos. Chem. Phys., to appear.
  • Gillett, Z. E., and 13 others (2019), Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry–climate models, J. Climate, 32, 3131–3151, https://doi.org/10.1175/JCLI-D-18-0273.1
  • Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019.
  • McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z
  • Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516.
  • Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019.
  • SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/.
  • Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019.

2018

  • Ayarzagüena, B., and 26 others (2018), No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277-11287, https://doi.org/10.5194/acp-18-11277-2018.
  • Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035.
  • Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018.
  • WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.
  • Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, doi:10.5194/acp-18-1091-2018.
  • Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, doi:10.5194/acp-18-7217-2018
  • Dietmüller, S., and 22 others (2018), Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Atmos. Chem. Phys., 18, 6699-6720, doi:10.5194/acp-18-6699-2018.
  • Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978.
  • Dhomse, S. S., and 46 others (2018), Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409-8438, doi:10.5194/acp-18-8409-2018, 2018.

2017

  • Son, S.-W., and 28 others (2017), Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024.
  • Zhang, J., and 25 others (2017), Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Communications, 9, 206, doi:10.1038/s41467-017-02565-2.
  • Zeng, G., Morgenstern, O., Shiona, H., Thomas, A. J., Querel, R. R., and Nichol, S. E.: Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, doi:10.5194/acp-17-10495-2017, 2017.
  • Liang, Q., and 27 others (2017), Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, doi:10.1002/2017JD026926.
  • Anderson, D., and 37 others (2017), Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, doi:10.1002/2016JD026121.
  • Dennison, F., McDonald, A., and Morgenstern, O.: The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, doi:10.5194/acp-17-14075-2017, 2017.
  • Morgenstern, O., and 37 others (2017), Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639-671, 2017.
  • Understanding the glacial atmospheric methane cycle, P.O. Hopcroft, P.J. Valdes, F.M. O'Connor, J.O. Kaplan, and D.J. Beerling, Nature Comms., 8, 14383, doi:10.1038/ncomms14383, 2017.
  • The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, S. C. Hardiman, N. Butchart, F. M. O'Connor, and S.T. Rumbold, Geosci. Model Dev., 10, 1209-1232, 2017.
  • Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, F. Pannullo, D. Lee, L. Neal, M. Dalvi, P. Agnew, F. M. O'Connor, S. Mukhopadhyay, S. Sahu, and C. Sarran, Environ. Health, DOI:10.1186/s12940-017-0237-1, 2017.
  • Evidence cloud liquid water path is invariant in Aerosol-Cloud Interactions, F. Malavelle, J. Haywood, et al., including M. Dalvi and F.M. O'Connor, Nature, 546, 485-491, 2017.

2016

  • Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016), Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905–3925, doi:10.1002/2015JC011286.
  • Dennison, F. W., A. J. McDonald, and O. Morgenstern (2016), The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, doi:10.1002/2016JD025033.
  • López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016) Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, doi:10.5194/acp-16-14599-2016.
  • Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, doi:10.1002/2015GL067545.
  • Stone, K. A., Morgenstern, O., Karoly, D. J., Klekociuk, A. R., French, W. J., Abraham, N. L., and Schofield, R.: Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere, Atmos. Chem. Phys., 16, 2401-2415, doi:10.5194/acp-16-2401-2016, 2016.

2015

2014

2013

2012

2011

2010

2009

2008

2007