Difference between pages "Publications" and "Aerosol Subproject"

From UKCA
(Difference between pages)
(→‎2013: add a couple more publications)
 
(New page: To find out more about the UKCA aerosol sub-model contact [mailto:gmann@env.leeds.ac.uk Graham Mann] or visit the [http://researchpages.net/GLOMAP/ GLOMAP page at ResearchPages.net]. ==Ae...)
 
Line 1: Line 1:
  +
To find out more about the UKCA aerosol sub-model contact [mailto:gmann@env.leeds.ac.uk Graham Mann] or visit the [http://researchpages.net/GLOMAP/ GLOMAP page at ResearchPages.net].
==List of UKCA Publications==
 
   
  +
==Aerosols: Why do we need UKCA?==
Here is a list of Publications (by year) which use the UKCA Model:
 
   
  +
Changes in the global aerosol can modify the earth's radiation budget through their ability to scatter and absorb solar and terrestrial radiation (direct effect) and by their ability to modify cloud properties via changed cloud condensation nucleii number. Additionally, aerosol particles provide surfaces for heterogeneous chemical reactions to take place, many of which are important in determining the tropospheric ozone burden. The online coupling of the model chemistry and aerosol schemes will enable oxidant changes to affect the evolution of the global aerosol and vice versa.
== 2013 ==
 
   
  +
The current UM aerosol scheme represents ammonium sulfate, soot and biomass smoke aerosol as separate lognormal modes, whilst dust is carried in six size sections. Although these represent some important components of the global aerosol, there are additional chemical components of the aerosol that are now known to be important in the direct and indirect radiative forcing, but which are not included in the UM. Several aspects of the microphysical scheme will also be improved, such as the inclusion of mixed composition particles and the prognosis of particle number concentrations.
* [http://www.atmos-chem-phys-discuss.net/13/8455/2013/acpd-13-8455-2013.html Consistent circulation differences in the Southern Hemisphere caused by ozone changes: a chemistry-climate model and observational study] Braesicke, P., Keeble, J., Yang, X., Stiller, G., Kellmann, S., Abraham, N. L., Archibald, A. T., Telford, P., and Pyle, J. A. Atmos. Chem. Phys. Discuss., 13, 8455-8487, doi:10.5194/acpd-13-8455-2013, 2013.
 
* [http://www.atmos-chem-phys-discuss.net/13/437/2013/acpd-13-437-2013.html Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon]. Z. Kipling, P. Stier, J. P. Schwarz, A. E. Perring, J. R. Spackman, G. W. Mann, C. E. Johnson, and P. J. Telford. Atmos. Chem. Phys. Dis., 13, 437-473, 2013
 
* [http://onlinelibrary.wiley.com/doi/10.1029/2012JD018382/ Impacts of climate change, ozone recovery, and increasing methane on surface ozone and the tropospheric oxidizing capacity] Olaf Morgenstern, Guang Zeng, N. Luke Abraham, Paul J. Telford, Peter Braesicke, John A. Pyle, Steven C. Hardiman, Fiona M. O'Connor, Colin E. Johnson, Journal of Geophysical Research: Atmospheres Volume 118, Issue 2, pages 1028–1041, 27 January 2013
 
* [http://www.geosci-model-dev-discuss.net/6/1743/2013/gmdd-6-1743-2013.html Evaluation of the new UKCA climate-composition model. Part II. The troposphere]. F.M. O'Connor, C.E. Johnson, O. Morgenstern, N.L. Abraham, P. Braesicke, M. Dalvi, G.A. Folberth, M.G. Sanderson, P.J. Telford, P.J. Young, G. Zeng, W.J. Collins, and J.A. Pyle, Geosci. Model Dev. Disc., 6, 1743-1857, 2013.
 
* [http://www.geosci-model-dev.net/6/353/2013/gmd-6-353-2013.html Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation]. Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O'Connor, F. M., and Dalvi, M., Geosci. Model Dev., 6, 353-372, doi:10.5194/gmd-6-353-2013, 2013.
 
* [http://www.geosci-model-dev.net/6/161/2013/gmd-6-161-2013.html Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3)]. P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi, O. Morgenstern, F. M. O'Connor, N. A. D. Richards, and J. A. Pyle. Geosci. Model Dev., 6, 161-177, 2013.
 
   
  +
The IPCC third assessment report (2001) states that "the size distribution of aerosols is critical to all climate influences". One of the principal elements of the UKCA project is to improve on the current first generation aerosol scheme currently implemented in the UM.
== 2012 ==
 
   
  +
Like most GCMs, CPU constraints have hitherto forced the UM aerosol scheme to only carry the mass in each aerosol mode, with the number of particles derived from an assumed fixed size distribution. Such "first generation" aerosol models have unwanted side-effects. For instance, an increase in particle mass caused by a microphysical process such as cloud processing results in a non-physical increase in the particle number concentration. Also, observations show large spatial and temporal variations in the mean size of Aitken and accumulation aerosol mode particles which cannot be captured by the current UM scheme.
* [http://www.atmos-chem-phys-discuss.net/12/21437/2012/acpd-12-21437-2012.pdf Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model]. N. Bellouin, G. W. Mann, M. T. Woodhouse, C. Johnson, K. S. Carslaw, and M. Dalvi, Atmos. Chem. Phys. Discuss., 12, 21437-21479, 2012.
 
   
  +
A second area for improvement is the mixing state of particles. The existing UM aerosol scheme assumes each of the aerosol components to be externally mixed (particles consist of only one component). In reality, condensation and coagulation result in internal mixtures (e.g. soot and sulfate), whose direct and indirect radiative properties may differ substantially from a corresponding external mixture.
* [http://www.atmos-chem-phys.net/12/6775/2012/acp-12-6775-2012.html The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol]. J. Browse, K. S. Carslaw, S. R. Arnold, K. Pringle, and O. Boucher, Atmos. Chem. Phys., 12, 6775-6798, 2012.
 
   
  +
The online coupling of UKCA gas phase chemistry and the aerosol scheme will also improve the model considerably. In-cloud partitioning between sulfate, ammonium and nitrate aerosol will also be included in UKCA. Reduced chemistry schemes are being developed in Leeds to enable secondary organic aerosol to be included in UKCA.
* [http://www.atmos-chem-phys.net/12/11573/2012/acp-12-11573-2012.html No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols]. E. M. Dunne, L. A. Lee, C. L. Reddington, and K. S. Carslaw, Atmos. Chem. Phys., 12, 11573-11587, 2012.
 
  +
How is the UKCA aerosol scheme being developed?
   
  +
[http://www.atm.ch.cam.ac.uk/acmsu/softsupp.html ACMSU] research scientist Dr Graham Mann and Prof Ken Carslaw at the University of Leeds are developing the main component of the UKCA aerosol sub-model.
* [http://www.agu.org/journals/gl/gl1220/2012GL053401/index.shtml Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons]. Hossaini, R., et al., Geophys. Res. Lett., 39, L20813, 2012.
 
   
  +
The multi-component aerosol model combines a dynamically varying size distribution with a representation of composition and mixing state, at a cost compatible with GCM CPU constraints. The multi-component multi-modal UKCA aerosol scheme is initially being developed offline within the [http://www.env.leeds.ac.uk/research/ias/chemistry/tomcat.htm TOMCAT] chemical transport model to facilitate comparison with observations and with the more detailed sectional multi-distribution multi-component [http://www.env.leeds.ac.uk/research/ias/aerosols/glomap.htm GLOMAP] model scheme.
* [http://www.atmos-chem-phys.net/12/9739/2012/acp-12-9739-2012.html Mapping the uncertainty in global CCN using emulation]. L. A. Lee, K. S. Carslaw, K. J. Pringle, and G. W. Mann, Atmos. Chem. Phys., 12, 9739-9751, 2012
 
   
  +
At the [http://www.metoffice.gov.uk/ Met Office], Dr Jamie Rae and Dr Colin Johnson are developing new cloud chemistry and multi-component aerosol chemistry schemes for incorporation into UKCA with input from [http://diac.nerc.ac.uk/ DIAC] scientist Dr Dave Topping and Dr. Gordon McFiggans at the University of Manchester. Met Office scientists Dr Jim Haywood and Dr. Nicholas Bellouin are also developing a new aerosol component of the UM radiation scheme which incorporates the varying size, composition and mixing state made possible by UKCA. A collaboration within the NERC [http://quest.bris.ac.uk/ QUEST] programme with Dr Mat Evans and Prof Mike Pilling from the University of Leeds will also develop suitable emission, deposition and chemistry schemes to enable secondary organic aerosol to be incorporated into UKCA.
* [http://www.atmos-chem-phys.net/12/4449/2012/acp-12-4449-2012.pdf Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model]. G. W. Mann, K. S. Carslaw, D. A. Ridley, D. V. Spracklen, K. J. Pringle, J. Merikanto, H. Korhonen, J. P. Schwarz, L. A. Lee, P. T. Manktelow, M. T. Woodhouse, A. Schmidt, T. J. Breider, K. M. Emmerson, C. L. Reddington, M. P. Chipperfield, and S. J. Pickering, Atmos. Chem. Phys., Atmos. Chem. Phys., 12, 4449–4476, 2012.
 
   
  +
==What Science can be done with UKCA?==
*[http://www.agu.org/journals/jd/jd1222/2012JD018276/ Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry]. Pacifico, F., G. A. Folberth, C. D. Jones, S. P. Harrison, and W. J. Collins, J. Geophys. Res., 117, D22302, doi:10.1029/2012JD018276, 2012.
 
   
  +
The UKCA model will enable improved estimates of the aerosol direct and indirect effects on climate. The effect of previous assumptions of fixed-size and external mixtures on climate responses to changing anthropogenic emissions will also be able to be investigated. It is becoming increasingly clear that climate research must cover the entire earth system. UKCA will be implemented in the new HadGEM models in development, which will enable the study of global biogeochemical feedbacks on the climate system. For instance, will a warmer earth increase dust deposition into the ocean, resulting in increased oceanic dimethyl sulfide emissions and increased CCN number, and brighter, longer lived clouds reducing the warming signal? Also, how will predicted changes in land use feed back on climate due to secondary organic aerosol produced from condensation of low volatility oxidation products of monoterpene emissions from trees and vegetation.
* [http://www.atmos-chem-phys-discuss.net/12/7125/2012/acpd-12-7125-2012.html A multi-model assessment of the efficacy of sea spray geoengineering]. K. J. Pringle, K. S. Carslaw, T. Fan, G.W. Mann, A. Hill, P. Stier, K. Zhang, and H. Tost, Atmos. Chem. Phys. Discuss., 12, 7125-7166, 2012.
 
 
* [http://www.atmos-chem-phys-discuss.net/12/26503/2012/acpd-12-26503-2012.pdf The size distribution and mixing state of black carbon aerosol over Europe]. C. L. Reddington, G. McMeeking, G. W. Mann, H. Coe, M. G. Frontoso, D. Liu, M. Flynn, D. V. Spracklen, and K. S. Carslaw, Atmos. Chem. Phys. Discuss., 12, 26503-26560, 2012.
 
 
* [http://www.atmos-chem-phys.net/12/7321/2012/acp-12-7321-2012.pdf Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate]. A. Schmidt, K. S. Carslaw, G. W. Mann, A. Rap, K. J. Pringle, D. V. Spracklen, M. Wilson, and P. M. Forster, Atmos. Chem. Phys., 12, 7321-7339, 2012.
 
 
* [http://www.atmos-chem-phys-discuss.net/12/27395/2012/acpd-12-27395-2012.pdf Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions]. M. T. Woodhouse, G. W. Mann, K. S. Carslaw, and O. Boucher, Atmos. Chem. Phys. Discuss., 12, 27395-27423, 2012.
 
 
==2011==
 
 
* [http://www.pnas.org/content/108/38/15710.full.pdf+html Excess mortality in Europe following a future Laki-style Icelandic eruption]. A. Schmidt, B. Ostro, K. S. Carslaw, M. Wilson, T. Thordarson, G. W. Mann and A. J. Simmons, Proceedings of the National Academy of Sciences, USA, vol. 108 ∣ no. 38, pp. 15710–15715, 2011.
 
* [http://www.atmos-chem-phys.net/11/12253/2011/acp-11-12253-2011.pdf Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters]. L. A. Lee, K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V. Spracklen, Atmos. Chem. Phys., 11, 12253-12273, 2011.
 
* [http://www.agu.org/pubs/crossref/2011/2010GL046520.shtml Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres] A. T. Archibald, J. G. Levine, N. L. Abraham, M. C. Cooke, P. M. Edwards, D. E. Heard, M. E. Jenkin, A. Karunaharan, R. C. Pike, P. S. Monks, D. E. Shallcross, P. J. Telford, L. K. Whalley, and J. A. Pyle, Geophys. Res. Lett. , 38 , L05804, doi:10.1029/2010GL046520
 
* [http://www.agu.org/pubs/crossref/2011/2010GL046228.shtml Ozone concentration changes in the Asian summer monsoon anticyclone and lower stratospheric water vapour: An idealised model study]: ,Braesicke, P., O. J. Smith, P. Telford, and J. A. Pyle (2011), Geophys. Res. Lett., 38, 10.1029/2010GL046228, L03810.
 
* [http://www.geosci-model-dev.net/4/1051/2011/ Development and evaluation of an Earth-system model - HadGEM2] W. J. Collins, N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton, J. Hughes, C. D. Jones, M. Joshi, S. Liddicoat, G. Martin, F. O'Connor, J. Rae, C. Senior, S. Sitch, I. Totterdell, A. Wiltshire, and S. Woodward, Geosci. Model Dev., 4, 1051-1075, 2011.
 
* [http://dx.doi.org/10.5194/acp-11-599-2011 Attribution of observed changes in stratospheric ozone and temperature] Gillett, N. P., Akiyoshi, H., Bekki, S., Braesicke, P., Eyring, V., Garcia, R., Karpechko, A. Yu., McLinden, C. A., Morgenstern, O., Plummer, D. A., Pyle, J. A., Rozanov, E., Scinocca, J., and Shibata, K., (2011), Atmos. Chem. Phys., 10.5194/acp-11-599-2011 11, 599-609
 
* [http://www.geosci-model-dev.net/4/543/2011/ The HadGEM2-ES implementation of CMIP5 centennial simulations] C. D. Jones, J. K. Hughes, N. Bellouin, S. C. Hardiman, G. S. Jones, J. Knight, S. Liddicoat, F. M. O'Connor, R. J. Andres, C. Bell, K.-O. Boo, A. Bozzo, N. Butchart, P. Cadule, K. D. Corbin, M. Doutriaux-Boucher, P. Friedlingstein, J. Gornall, L. Gray, P. R. Halloran, G. Hurtt, W. J. Ingram, J.-F. Lamarque, R. M. Law, M. Meinshausen, S. Osprey, E. J. Palin, L. Parsons Chini, T. Raddatz, M. G. Sanderson, A. A. Sellar, A. Schurer, P. Valdes, N. Wood, S. Woodward, M. Yoshioka, and M. Zerroukat, Geosci. Model Dev., 4, 543-570, 2011.
 
* [http://www.atmos-chem-phys-discuss.net/11/9057/2011/acpd-11-9057-2011.pdf Large methane releases lead to strong aerosol forcing and reduced cloudiness] T. Kurtén, L. Zhou, R. Makkonen, J. Merikanto, P. Räisänen, M. Boy, N. Richards, A. Rap, S. Smolander, A. Sogachev, A. Guenther, G. W. Mann, K. Carslaw, and M. Kulmala (2011), Atmos. Chem. Phys. Discuss., 11, 9057-9081.
 
*[http://www.geosci-model-dev.net/4/723/2011/ The HadGEM2 family of Met Office Unified Model climate configurations] The HadGEM2 Development Team: G. M. Martin, Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J.M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A., Geosci. Model Dev., 4, 723-757, 2011.
 
* [http://www.atmos-chem-phys.net/11/2765/2011/acp-11-2765-2011.html Representation of tropical deep convection in atmospheric models – Part 1: Meteorology and comparison with satellite observations],Russo, M. R., Marécal, V., Hoyle, C. R., Arteta, J., Chemel, C., Chipperfield, M. P., Dessens, O., Feng, W., Hosking, J. S., Telford, P. J., Wild, O., Yang, X., and Pyle, J. A, Atmos. Chem. Phys., 11, doi:10.5194/acp-11-2765-2011, 2765-2786.
 
* [http://www.atmos-chem-phys.net/11/8459/2011/acp-11-8459-2011.pdf Minor effect of physical size sorting on iron solubility of transported mineral dust] Z. B. Shi, M. T. Woodhouse, K. S. Carslaw, M. D. Krom, G. W. Mann, A. R. Baker, I. Savov, G. Fones, B. Brooks, T. D. Jickells, and L. G. Benning, Atmos. Chem. Phys., 11, 8459-8469, 2011.
 
* [http://www.agu.org/pubs/crossref/2011/2010GB003837.shtml Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing] Z. B. Shi, M. Krom, S. Bonneville, A. R. Baker, C. Bristow, N. Drake, G. W. Mann, K. S. Carslaw, J. B. McQuaid, T. Jickells, L. G. Benning, Global Biogeochem. Cycles, doi:10.1029/2010GB003837, 2011.
 
* [http://www.atmos-chem-phys.net/11/12109/2011/acp-11-12109-2011.pdf Aerosol mass spectrometer constraint on the global secondary organic aerosol budget] D. V. Spracklen, J. L. Jimenez, K. S. Carslaw, D. R. Worsnop, M. J. Evans, G. W. Mann, Q. Zhang, M. R. Canagaratna, J. Allan, H. Coe, G. McFiggans, A. Rap, and P. Forster (2011), Atmos. Chem. Phys., 11, 12109-12136, 2011.
 
* [http://www.atmos-chem-phys.net/11/9067/2011/acp-11-9067-2011.pdf Global cloud condensation nuclei influenced by carbonaceous combustion aerosol] D. V. Spracklen, K. S. Carslaw, U. Poeschl, A. Rap, and P. M. Forster (2011), Atmos. Chem. Phys., 11, 9067-9087, 2011.
 
* [http://www.atmos-chem-phys.net/11/5819/2011/acp-11-5819-2011.html Global multi-year O3-CO correlation patterns from models and TES satellite observations] A. Voulgarakis, P. J. Telford, A. M. Aghedo, P. Braesicke, G. Faluvegi, N. L. Abraham, K. W. Bowman, J. A. Pyle, and D. T. Shindell, (2011), Atmos. Chem. Phys., 11, 5819-5838, doi:10.5194/acp-11-5819-2011
 
 
==2010==
 
 
* [http://www.agu.org/pubs/crossref/2010/2009JD013577.shtml Chemistry-climate model simulations of spring Antarctic ozone]: Austin, J., et al. (2010), Chemistry-climate model simulations of spring Antarctic ozone, J. Geophys. Res., 115, D00M11, doi:10.1029/2009JD013577.
 
* [http://www.agu.org/pubs/crossref/2010/2010JD013857.shtml Decline and recovery of total column ozone using a multimodel time series analysis]: Austin, J., et al. (2010), Decline and recovery of total column ozone using a multimodel time series analysis, J. Geophys. Res., 115, D00M10, doi:10.1029/2010JD013857.
 
* [http://www.agu.org/pubs/crossref/2010/2009GL040868.shtml Impact of BrO on dimethylsulfide in the remote marine boundary layer] Breider, T. J., M. P. Chipperfield, N. A. D. Richards, K. S. Carslaw, G. W. Mann, and D. V. Spracklen (2010), Impact of BrO on dimethylsulfide in the remote marine boundary layer, Geophys. Res. Lett., 37, L02807, doi:10.1029/2009GL040868.
 
* [http://www.atmos-chem-phys.net/10/9473/2010/acp-10-9473-2010.html The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century]: Charlton-Perez, A. J., Hawkins, E., Eyring, V., Cionni, I., Bodeker, G. E., Kinnison, D. E., Akiyoshi, H., Frith, S. M., Garcia, R., Gettelman, A., Lamarque, J. F., Nakamura, T., Pawson, S., Yamashita, Y., Bekki, S., Braesicke, P., Chipperfield, M. P., Dhomse, S., Marchand, M., Mancini, E., Morgenstern, O., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J., Shibata, K., Shepherd, T. G., Tian, W., and Waugh, D. W.: The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century, Atmos. Chem. Phys., 10, 9473-9486, doi:10.5194/acp-10-9473-2010, 2010
 
* [http://www.atmosp.physics.utoronto.ca/SPARC SPARC CCMVal (2010), SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models]: V. Eyring, T. G. Shepherd, D. W. Waugh (eds.), SPARC CCMVal (2010), SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, SPARC Report No. 5, WCRP-X, WMO/TD-No. X.
 
* [http://www.atmos-chem-phys.net/10/9451/2010/acp-10-9451-2010.html Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models] Eyring, V., Cionni, I., Bodeker, G. E., Charlton-Perez, A. J., Kinnison, D. E., Scinocca, J. F., Waugh, D. W., Akiyoshi, H., Bekki, S., Chipperfield, M. P., Dameris, M., Dhomse, S., Frith, S. M., Garny, H., Gettelman, A., Kubin, A., Langematz, U., Mancini, E., Marchand, M., Nakamura, T., Oman, L. D., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Shepherd, T. G., Shibata, K., Tian, W., Braesicke, P., Hardiman, S. C., Lamarque, J. F., Morgenstern, O., Pyle, J. A., Smale, D., and Yamashita, Y.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010.
 
* [http://www.agu.org/pubs/crossref/2010/2009JD013770.shtml Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models] Gerber, E. P., et al. (2010), Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models, J. Geophys. Res., 115, D00M06, doi:10.1029/2009JD013770.
 
* [http://www.agu.org/pubs/crossref/2010/2010JD013884.shtml Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics] Hegglin, M. I., et al. (2010), Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics, J. Geophys. Res., 115, D00M09, doi:10.1029/2010JD013884.
 
* [http://www.agu.org/journals/jd/jd1007/2009JD012788/ Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models]: Hurwitz, M. M., P. A. Newman, F. Li, L. D. Oman, O. Morgenstern, P. Braesicke, and J. A. Pyle (2010), Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models, J. Geophys. Res., 115, D07105, doi:10.1029/2009JD012788.
 
* [http://www.atmos-chem-phys.org/10/4133/2010/acp-10-4133-2010.html Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport] Korhonen, H., Carslaw, K. S., and Romakkaniemi, S.: Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport, Atmos. Chem. Phys., 10, 4133-4143, doi:10.5194/acp-10-4133-2010, 2010.
 
* [http://www.agu.org/pubs/crossref/2010/2009GL041320.shtml Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds] Korhonen, H., K. S. Carslaw, P. M. Forster, S. Mikkonen, N. D. Gordon, and H. Kokkola (2010), Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds, Geophys. Res. Lett., 37, L02805, doi:10.1029/2009GL041320.
 
* [http://www.atmos-chem-phys.org/10/365/2010/acp-10-365-2010.html The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm] Manktelow, P. T., Carslaw, K. S., Mann, G. W., and Spracklen, D. V.: The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm, Atmos. Chem. Phys., 10, 365-382, doi:10.5194/acp-10-365-2010, 2010.
 
* [http://www.geosci-model-dev.net/3/519/2010/gmd-3-519-2010.html Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model] Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519-551, doi:10.5194/gmd-3-519-2010, 2010.
 
* [http://www.atmos-chem-phys.org/10/695/2010/acp-10-695-2010.html Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000] Merikanto, J., Spracklen, D. V., Pringle, K. J., and Carslaw, K. S.: Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000, Atmos. Chem. Phys., 10, 695-705, doi:10.5194/acp-10-695-2010, 2010.
 
* [http://www.agu.org/journals/jd/jd1017/2009JD013347/ Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models]: Morgenstern, O., H. Akiyoshi, S. Bekki, P. Braesicke, N. Butchart, M. P. Chipperfield, D. Cugnet, M. Deushi, S. S. Dhomse, R. R. Garcia, A. Gettelman, N. P. Gillett, S. C. Hardiman, J. Jumelet, D. E. Kinnison, J.-F. Lamarque, F. Lott, M. Marchand, M. Michou, T. Nakamura, D. Olivié, T. Peter, D. Plummer, J. A. Pyle, E. Rozanov, D. Saint-Martin, J. F. Scinocca, K. Shibata, M. Sigmond, D. Smale, H. Teyssèdre, W. Tian, A. Voldoire, and Y. Yamashita (2010), J. Geophys. Res., 115, D00M03, doi:10.1029/2009JD013347.
 
* [http://www.agu.org/journals/jd/jd1015/2009JD013728/ Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings]: O. Morgenstern, M. A. Giorgetta, K. Shibata, V. Eyring, D. W. Waugh, T. G. Shepherd, H. Akiyoshi, J. Austin, A. J. G. Baumgaertner, S. Bekki, P. Braesicke, C. Brühl, M. P. Chipperfield, D. Cugnet, M. Dameris, S. Dhomse, S. M. Frith, H. Garny, A. Gettelman, S. C. Hardiman, M. I. Hegglin, P. Jöckel, D. E. Kinnison, J.-F. Lamarque, E. Mancini, E. Manzini, M. Marchand, M. Michou, T. Nakamura, J. E. Nielsen, D. Olivié, G. Pitari, D. A. Plummer, E. Rozanov, J. F. Scinocca, D. Smale, H. Teyssèdre, M. Toohey, W. Tian, and Y. Yamashita (2010), J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728.
 
* [http://www.agu.org/pubs/crossref/2010/2010JD014206.shtml Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis] Ray, E. A., et al. (2010), Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis, J. Geophys. Res., 115, D21304, doi:10.1029/2010JD014206.
 
* [http://www.atmos-chem-phys.org/10/6025/2010/acp-10-6025-2010.html The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei] Schmidt, A., Carslaw, K. S., Mann, G. W., Wilson, M., Breider, T. J., Pickering, S. J., and Thordarson, T.: The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei, Atmos. Chem. Phys., 10, 6025-6041, doi:10.5194/acp-10-6025-2010, 2010.
 
* [http://www.agu.org/pubs/crossref/2010/2010JD014271.shtml Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment] Son, S.-W., et al. (2010), Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.
 
* [http://www.atmos-chem-phys.net/10/7117/2010/acp-10-7117-2010.html Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo] Telford, P., J. Lathiere, N. L. Abraham, P. Braesicke, C. E. Johnson, O. Morgenstern, F. M. O'Connor, R. C. Pike, O. Wild, P. J. Young, D. Beerling, C. N. Hewitt and J. A. Pyle (2010), Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo, Atmos. Chem. Phys., 10, 7117-7125, doi:10.5194/acp-10-7117-2010
 
* [http://www.atmos-chem-phys.org/10/7545/2010/acp-10-7545-2010.html Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide] Woodhouse, M. T., Carslaw, K. S., Mann, G. W., Vallina, S. M., Vogt, M., Halloran, P. R., and Boucher, O.: Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide, Atmos. Chem. Phys., 10, 7545-7559, doi:10.5194/acp-10-7545-2010, 2010.
 
* [http://www.agu.org/journals/gl/gl1009/2010GL042812/ Impact of stratospheric ozone recovery on tropospheric ozone and the oxidizing capacity]: Zeng, G., O. Morgenstern, P. Braesicke, and J. A. Pyle (2010), Geophys. Res. Lett., 37, L09805, doi:10.1029/2010GL042812.
 
 
==2009==
 
 
* [http://www.geosci-model-dev.net/2/43/2009/ Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere]: Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A., Geosci. Model Dev., 2, 43-57, 2009.
 
* [http://www.agu.org/journals/gl/gl0916/2009GL039152/ Interactions between tropospheric chemistry and climate model temperature and humidity biases]: F. M. O'Connor, C. E. Johnson, O. Morgenstern, and W. J. Collins, Geophys. Res. Lett., 36, L16801, doi:10.1029/2009GL039152, 2009.
 
* [http://www.atmos-chem-phys.net/9/4251/2009/acp-9-4251-2009.html Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM]: Telford, P., Braesicke, P., Morgenstern, O., and Pyle, J.: Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM, Atmos. Chem. Phys., 9, 4251-4260, 2009.
 
 
==2008==
 
 
* [http://www.agu.org/pubs/crossref/2008/2007JD009718.shtml Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study]: Korhonen, H., K. S. Carslaw, D. V. Spracklen, G. W. Mann, and M. T. Woodhouse (2008), Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study, J. Geophys. Res., 113, D15204, doi:10.1029/2007JD009718.
 
* [http://www.agu.org/pubs/crossref/2008/2008GL034590.shtml The World Avoided by the Montreal Protocol]: Morgenstern, O., P. Braesicke, M. M. Hurwitz, F. M. O'Connor, A. C. Bushell, C. E. Johnson, and J. A. Pyle (2008), Geophys. Res. Lett., 35, L16811, doi:10.1029/2008GL034590.
 
* [http://www.atmos-chem-phys.net/8/1701/2008/acp-8-1701-2008.html Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model]: Telford, P. J., Braesicke, P., Morgenstern, O., and Pyle, J. A.: Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model, Atmos. Chem. Phys., 8, 1701-1712, 2008.
 
* [http://www.agu.org/pubs/crossref/2008/2007GL033038.shtml Contribution of particle formation to global cloud condensation nuclei concentrations]: Spracklen, D. V., et al. (2008), Contribution of particle formation to global cloud condensation nuclei concentrations, Geophys. Res. Lett., 35, L06808, doi:10.1029/2007GL033038.
 
* [http://www.sciencedirect.com/science/article/B6VH3-4SMNY0J-1/2/4a88e04ab0cac2c4069c19ac12c2c42f New Directions: The impact of oceanic iron fertilisation on cloud condensation nuclei]: Matthew T. Woodhouse, Graham W. Mann, Kenneth S. Carslaw, Olivier Boucher, New Directions: The impact of oceanic iron fertilisation on cloud condensation nuclei, Atmospheric Environment, Volume 42, Issue 22, July 2008, Pages 5728-5730, ISSN 1352-2310, DOI: 10.1016/j.atmosenv.2008.05.005.
 
 
==2007==
 
 
* [http://www.agu.org/pubs/crossref/2007/2006GL028668.shtml Regional and global trends in sulfate aerosol since the 1980s]: Manktelow, P. T., G. W. Mann, K. S. Carslaw, D. V. Spracklen, and M. P. Chipperfield (2007), Regional and global trends in sulfate aerosol since the 1980s, Geophys. Res. Lett., 34, L14803, doi:10.1029/2006GL028668.
 
* [http://www.atmos-chem-phys.net/7/2073/2007/acp-7-2073-2007.html Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere]: Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Mann, G. W., Manktelow, P., and Heintzenberg, J.: Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere, Atmos. Chem. Phys., 7, 2073-2090, 2007.
 

Revision as of 16:58, 18 December 2009

To find out more about the UKCA aerosol sub-model contact Graham Mann or visit the GLOMAP page at ResearchPages.net.

Aerosols: Why do we need UKCA?

Changes in the global aerosol can modify the earth's radiation budget through their ability to scatter and absorb solar and terrestrial radiation (direct effect) and by their ability to modify cloud properties via changed cloud condensation nucleii number. Additionally, aerosol particles provide surfaces for heterogeneous chemical reactions to take place, many of which are important in determining the tropospheric ozone burden. The online coupling of the model chemistry and aerosol schemes will enable oxidant changes to affect the evolution of the global aerosol and vice versa.

The current UM aerosol scheme represents ammonium sulfate, soot and biomass smoke aerosol as separate lognormal modes, whilst dust is carried in six size sections. Although these represent some important components of the global aerosol, there are additional chemical components of the aerosol that are now known to be important in the direct and indirect radiative forcing, but which are not included in the UM. Several aspects of the microphysical scheme will also be improved, such as the inclusion of mixed composition particles and the prognosis of particle number concentrations.

The IPCC third assessment report (2001) states that "the size distribution of aerosols is critical to all climate influences". One of the principal elements of the UKCA project is to improve on the current first generation aerosol scheme currently implemented in the UM.

Like most GCMs, CPU constraints have hitherto forced the UM aerosol scheme to only carry the mass in each aerosol mode, with the number of particles derived from an assumed fixed size distribution. Such "first generation" aerosol models have unwanted side-effects. For instance, an increase in particle mass caused by a microphysical process such as cloud processing results in a non-physical increase in the particle number concentration. Also, observations show large spatial and temporal variations in the mean size of Aitken and accumulation aerosol mode particles which cannot be captured by the current UM scheme.

A second area for improvement is the mixing state of particles. The existing UM aerosol scheme assumes each of the aerosol components to be externally mixed (particles consist of only one component). In reality, condensation and coagulation result in internal mixtures (e.g. soot and sulfate), whose direct and indirect radiative properties may differ substantially from a corresponding external mixture.

The online coupling of UKCA gas phase chemistry and the aerosol scheme will also improve the model considerably. In-cloud partitioning between sulfate, ammonium and nitrate aerosol will also be included in UKCA. Reduced chemistry schemes are being developed in Leeds to enable secondary organic aerosol to be included in UKCA. How is the UKCA aerosol scheme being developed?

ACMSU research scientist Dr Graham Mann and Prof Ken Carslaw at the University of Leeds are developing the main component of the UKCA aerosol sub-model.

The multi-component aerosol model combines a dynamically varying size distribution with a representation of composition and mixing state, at a cost compatible with GCM CPU constraints. The multi-component multi-modal UKCA aerosol scheme is initially being developed offline within the TOMCAT chemical transport model to facilitate comparison with observations and with the more detailed sectional multi-distribution multi-component GLOMAP model scheme.

At the Met Office, Dr Jamie Rae and Dr Colin Johnson are developing new cloud chemistry and multi-component aerosol chemistry schemes for incorporation into UKCA with input from DIAC scientist Dr Dave Topping and Dr. Gordon McFiggans at the University of Manchester. Met Office scientists Dr Jim Haywood and Dr. Nicholas Bellouin are also developing a new aerosol component of the UM radiation scheme which incorporates the varying size, composition and mixing state made possible by UKCA. A collaboration within the NERC QUEST programme with Dr Mat Evans and Prof Mike Pilling from the University of Leeds will also develop suitable emission, deposition and chemistry schemes to enable secondary organic aerosol to be incorporated into UKCA.

What Science can be done with UKCA?

The UKCA model will enable improved estimates of the aerosol direct and indirect effects on climate. The effect of previous assumptions of fixed-size and external mixtures on climate responses to changing anthropogenic emissions will also be able to be investigated. It is becoming increasingly clear that climate research must cover the entire earth system. UKCA will be implemented in the new HadGEM models in development, which will enable the study of global biogeochemical feedbacks on the climate system. For instance, will a warmer earth increase dust deposition into the ocean, resulting in increased oceanic dimethyl sulfide emissions and increased CCN number, and brighter, longer lived clouds reducing the warming signal? Also, how will predicted changes in land use feed back on climate due to secondary organic aerosol produced from condensation of low volatility oxidation products of monoterpene emissions from trees and vegetation.