Difference between revisions of "Publications"
From UKCA
(→2017) |
(→2019) |
||
(23 intermediate revisions by 2 users not shown) | |||
Line 5: | Line 5: | ||
== 2021 == |
== 2021 == |
||
− | * Allen |
+ | * Allen et al., Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions, Env. Res. Lett., https://iopscience.iop.org/article/10.1088/1748-9326/abe06b, 2021. |
− | * Clyne |
+ | * Clyne et al., Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3317/2021/, 2021. |
* Fenech et al., Future health burdens associated with emission changes in the UK, Sci. Total Environ., https://www.sciencedirect.com/science/article/abs/pii/S0048969721007038?dgcid=coauthor, 2021. |
* Fenech et al., Future health burdens associated with emission changes in the UK, Sci. Total Environ., https://www.sciencedirect.com/science/article/abs/pii/S0048969721007038?dgcid=coauthor, 2021. |
||
* Garfinkel et al., Influence of ENSO on entry stratospheric water vapor in CCMI models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3725/2021/, 2021. |
* Garfinkel et al., Influence of ENSO on entry stratospheric water vapor in CCMI models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3725/2021/, 2021. |
||
− | * Griffiths et al., Tropospheric ozone in CMIP6 simulations, Atmos. Chem. Phys |
+ | * Griffiths et al., Tropospheric ozone in CMIP6 simulations, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/4187/2021/, 2021. |
* Keeble et al., Using machine learning to make computationally inexpensive projections of 21st Century stratospheric column ozone changes in the tropics, Frontiers in Earth Science, https://www.frontiersin.org/articles/10.3389/feart.2020.592667/full, 2021. |
* Keeble et al., Using machine learning to make computationally inexpensive projections of 21st Century stratospheric column ozone changes in the tropics, Frontiers in Earth Science, https://www.frontiersin.org/articles/10.3389/feart.2020.592667/full, 2021. |
||
* Liu et al., Contrasting atmospheric ozone chemical environments in China: different effectiveness of emission control strategies regionally and across the globe, Atmos. Chem. Phys. Disc., https://acp.copernicus.org/preprints/acp-2020-1251/, In discussion, 2021. |
* Liu et al., Contrasting atmospheric ozone chemical environments in China: different effectiveness of emission control strategies regionally and across the globe, Atmos. Chem. Phys. Disc., https://acp.copernicus.org/preprints/acp-2020-1251/, In discussion, 2021. |
||
Line 24: | Line 24: | ||
* Allen et al., Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9641/2020/, 2020. |
* Allen et al., Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9641/2020/, 2020. |
||
* Amos et al., Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9961/2020, 2020. |
* Amos et al., Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9961/2020, 2020. |
||
− | * Antuña-Marrero |
+ | * Antuña-Marrero, J.-C., G.W. Mann, P. Keckhut, S. Avdyushin, B. Nardi and L.W. Thomason (2020): Shipborne lidar measurements showing the progression of the tropical reservoir of volcanic aerosol after the June 1991 Pinatubo eruption, Earth Sys. Sci. Data, vol. 12, 2843-2851, https://doi.org/10.5194/essd-12-2843-2020. |
+ | * Antuña-Marrero, J.-C., G.W. Mann, J. Barnes, A. Rodriguez-Vega, S. Shallcross, S. Dhomse, G. Giocco and G.W. Grams (2020): Recovery of the first ever multi-year lidar dataset of the stratospheric aerosol layer, from Lexington, MA, and Fairbanks, AK, January 1964 to July 1965, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-246. |
||
− | * Archibald et al. |
+ | * Archibald, A.T., F.M. O'Connor, N.L. Abraham, S. Archer-Nicholls, M.P. Chipperfield, M. Dalvi, G.A. Folberth et al. (2020): Description and evaluation of the UKCA stratosphere-troposphere chemistry (UKCA StratTrop) as implemented in UKESM1, Geosci. Model Dev., vol. 13, 1223-1266, https://doi.org/10.5194/gmd-13-1223-2020. |
− | * Archibald |
+ | * Archibald, A.T., S.T. Turnock, P.T. Griffiths, T. Cox, R.G. Derwent, C. Knote and M. Shin (2020): On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms, Phil. Trans. Royal Soc. A, vol. 378, https://doi.org/10.1098/rsta.2019.0329. |
− | * Dhomse |
+ | * Dhomse, S.S., G.W. Mann, J.-C. Antuna-Marrero, S.E. Shallcross, M.P. Chipperfield, K.S. Carslaw, L. Marshall, N.L. Abraham, and C.E. Johnson (2020): Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds, Atmos. Chem. Phys., vol. 20, 13627-13654, https://doi.org/10.5194/acp-20-13627-2020. |
− | * Griffiths et al., On the Changing Role of the Stratosphere on the Tropospheric Ozone Budget: 1979-2010, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2019GL086901, 2020. |
||
+ | * Griffiths, P. T., J. Keeble, Y.M. Shin, N.L. Abraham, A.T. Archibald, and J.A. Pyle (2020): On the changing role of the stratosphere on the tropospheric ozone budget: 1979–2010. Geophys. Res. Lett., 46, https://doi.org/10.1029/2019GL086901. |
||
⚫ | |||
− | * |
+ | * Grosvenor, D.P. and K.S. Carslaw (2020): The decomposition of cloud–aerosol forcing in the UK Earth System Model (UKESM1), Atmos. Chem. Phys., vol. 20, 15681-15724, https://doi.org/10.5194/acp-20-15681-2020. |
⚫ | |||
− | * Keeble |
+ | * Keeble, J., N.L. Abraham, A.T. Archibald, M.P. Chipperfield, S.S. Dhomse, P.T. Griffiths and J.A. Pyle (2020): Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery, Atmos. Chem. Phys., vol. 20, 7153-7166, https://doi.org/10.5194/acp-20-7153-2020. |
− | * Morgenstern et al. |
+ | * Morgenstern, O., F.M. O'Connor, B.T. Johnson, G. Feng, J.P. Mulcahy, J. Williams, J. Teixeira, M. Michou, P. Nabat et al. (2020): Reappraisal of the climate impacts of ozone-depleting substances, Geophys. Res. Lett., 47, https://doi.org/10.1029/2020GL088295. |
− | * Mulcahy et al. |
+ | * Mulcahy, J.M., C. Johnson, C.G. Jones, A.C. Povey, C.E. Scott, A. Sellar, S.T. Turnock, M.T. Woodhouse, N.L. Abraham et al. (2020): Description and evaluation of aerosol in UKESM1 and HadGEM-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., vol. 13, 6383-6423, https://doi.org/10.5194/gmd-13-6383-2020. |
* Nicely et al., A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/1341/2020/, 2020. |
* Nicely et al., A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/1341/2020/, 2020. |
||
* Orbe et al., Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/3809/2020/, 2020. |
* Orbe et al., Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/3809/2020/, 2020. |
||
Line 57: | Line 58: | ||
* Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019. |
* Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019. |
||
* Malavelle, F.F., et al., Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, https://acp.copernicus.org/articles/19/1301/2019/, 2019 |
* Malavelle, F.F., et al., Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, https://acp.copernicus.org/articles/19/1301/2019/, 2019 |
||
− | * Marshall |
+ | * Marshall, L., J.S. Johnson, G.W. Mann, L.A. Lee, S.S. Dhomse, L.A. Regayre, M. Yoshioka, K.S Carslaw and A. Schmidt (2019): Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation, J. Geophys. Res.: Atmos., vol. 124, https://doi.org/10.1029/2018JD028675. |
* McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z |
* McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z |
||
* Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516. |
* Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516. |
||
* Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019. |
* Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019. |
||
+ | * Sellar, A., C. G. Jones, J. P. Mulcahy, Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M. et al. (2019): "UKESM1: Description and evaluation of the U.K. Earth System Model", J. Adv. Modeling Earth Sys., vol. 11, issue 12, 4513-4558, https://doi.org/10.1029/2019MS001739 |
||
* Shi et al., Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/7519/2019/, 2019. |
* Shi et al., Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/7519/2019/, 2019. |
||
* SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/. |
* SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/. |
||
* Turnock et al., The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082067, 2019. |
* Turnock et al., The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082067, 2019. |
||
+ | * Turnock et al., The impact of climate mitigation measures on near term climate forcers, Environ. Res. Lett., https://iopscience.iop.org/article/10.1088/1748-9326/ab4222, 2019. |
||
+ | * Turnock et al., 300 years of tropospheric ozone changes using CMIP6 scenarios with a parameterised approach, Atmos. Environ., https://www.sciencedirect.com/science/article/pii/S1352231019304443?via%3Dihub, 2019. |
||
* Walters et al., The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., https://gmd.copernicus.org/articles/12/1909/2019/gmd-12-1909-2019.html, 2019. |
* Walters et al., The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., https://gmd.copernicus.org/articles/12/1909/2019/gmd-12-1909-2019.html, 2019. |
||
* Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019. |
* Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019. |
||
Line 79: | Line 83: | ||
* Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018. |
* Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018. |
||
* Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035. |
* Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035. |
||
− | * Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, |
+ | * Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018. |
+ | * Mulcahy, J.P., C. Jones, A. Sellar, B. Johnson, I. A. Boutle, A. Jones, T. Andrews, S. T. Rumbold, J. Mollard, N. Bellouin, C. E. Johnson et al. (2018): Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, J. Adv. Mod. Earth Systems, 10, 2786-2805, https://doi.org/10.1029/2018MS001464. |
||
− | * Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, |
+ | * Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018 |
* Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018. |
* Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018. |
||
− | * Timmreck et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., https:// |
+ | * Timmreck, C., Mann, G.W., Aquila, V., Hommel, R., Lee, L.A., Schmidt, A., Bruehl, C., Carl, S. et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., vol. 11, 2581-2608, https://doi.org/10.5194/gmd-11-2581-2018, 2018. |
* Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978. |
* Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978. |
||
* WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018. |
* WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018. |
||
== 2017 == |
== 2017 == |
||
− | * Anderson, D. C., J. M. Nicely, G. M. Wolfe, T. F. Hanisco, R. J. Salawitch, T. P. Canty et al. (2017): Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, https://doi.org/10.1002/2016JD026121. |
+ | * Anderson, D. C., J. M. Nicely, G. M. Wolfe, T. F. Hanisco, R. J. Salawitch, T. P. Canty et al. (2017): Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, 11,201–11,226 https://doi.org/10.1002/2016JD026121. |
− | * Brooke, J. S. A., Feng, W., Carillo-Sanchez, J. D., Mann, G. W., James, A. D., Bardeen, C. G. et al. (2017): Meteoric smoke deposition in the polar regions: A comparison of measurements with global atmospheric models, J. Geophys. Res.: Atmos., https://doi.org/10.1002/2017JD027143. |
+ | * Brooke, J. S. A., Feng, W., Carillo-Sanchez, J. D., Mann, G. W., James, A. D., Bardeen, C. G. et al. (2017): Meteoric smoke deposition in the polar regions: A comparison of measurements with global atmospheric models, J. Geophys. Res.: Atmos., 122, 11,112–11,130, https://doi.org/10.1002/2017JD027143. |
− | * Butt, E. W., S. T. Turnock, R. Rigby, C. L. Reddington, M. Yoshioka, J. S. Johnson, L. A. Regayre et al. (2017): Global and regional trends in particulate air pollution and attributable health burden over the past 50 years, Environ. Res. Lett., https://doi.org/10.1088/1748-9326/aa87be. |
+ | * Butt, E. W., S. T. Turnock, R. Rigby, C. L. Reddington, M. Yoshioka, J. S. Johnson, L. A. Regayre et al. (2017): Global and regional trends in particulate air pollution and attributable health burden over the past 50 years, Environ. Res. Lett., vol. 12, no. 10, https://doi.org/10.1088/1748-9326/aa87be. |
* Dennison, F., McDonald, A., and Morgenstern, O. (2017): The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, https://doi.org/10.5194/acp-17-14075-2017. |
* Dennison, F., McDonald, A., and Morgenstern, O. (2017): The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, https://doi.org/10.5194/acp-17-14075-2017. |
||
* Hardiman, S. C., Butchart, N., O'Connor, F. M. and Rumbold, S. (2017): The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev., 10, 1209-1232, https://doi.org/10.5194/gmd-10-1209-2017. |
* Hardiman, S. C., Butchart, N., O'Connor, F. M. and Rumbold, S. (2017): The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev., 10, 1209-1232, https://doi.org/10.5194/gmd-10-1209-2017. |
||
Line 110: | Line 115: | ||
* Johnson, B. T., J. M. Haywood, J. M. Langridge, E. Darbyshire, W. T. Morgan, K. Szpek, J. K. Brooke, F. Marenco, H. Coe et al. (2016): Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, Atmos. Chem. Phys., 16, 14657-14685, https://doi.org/10.5194/acp-16-14657-2016. |
* Johnson, B. T., J. M. Haywood, J. M. Langridge, E. Darbyshire, W. T. Morgan, K. Szpek, J. K. Brooke, F. Marenco, H. Coe et al. (2016): Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, Atmos. Chem. Phys., 16, 14657-14685, https://doi.org/10.5194/acp-16-14657-2016. |
||
* Kapadia, Z. Z., D. V. Spracklen, S. R. Arnold, D. J. Borman, G. W. Mann, K. J. Pringle, S. A. Monks et al. (2016): Impacts of aviation fuel sulfur content on climate and human health, Atmos. Chem. Phys., 16, 10521-10541, https://doi.org/10.5194/acp-16-10521-2016. |
* Kapadia, Z. Z., D. V. Spracklen, S. R. Arnold, D. J. Borman, G. W. Mann, K. J. Pringle, S. A. Monks et al. (2016): Impacts of aviation fuel sulfur content on climate and human health, Atmos. Chem. Phys., 16, 10521-10541, https://doi.org/10.5194/acp-16-10521-2016. |
||
+ | * Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T. et al. (2015): What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II, Atmos. Chem. Phys., 16, 2765-2783, http://doi.org/10.5194/acp-16-2221-2016. |
||
* López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016): Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, https://doi.org/10.5194/acp-16-14599-2016. |
* López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016): Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, https://doi.org/10.5194/acp-16-14599-2016. |
||
* Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067545. |
* Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067545. |
||
Line 116: | Line 122: | ||
* Turnock, S. T., E. W. Butt, T. B. Richardson, G. W. Mann, C. L. Reddington, P. M. Forster, J. Haywood et al. (2016): The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate, Env. Res. Lett., 11, https://doi.org/10.1088/1748-9326/11/2/024010. |
* Turnock, S. T., E. W. Butt, T. B. Richardson, G. W. Mann, C. L. Reddington, P. M. Forster, J. Haywood et al. (2016): The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate, Env. Res. Lett., 11, https://doi.org/10.1088/1748-9326/11/2/024010. |
||
* Zanchettin, D., M. Khodri, C. Timmreck, M. Toohey, A. Schmidt, E. P. Gerber, G. Hegerl, A. Robock et al. (2016): The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Mod. Dev., 9, 2701-2719, https://doi.org/10.5194/gmd-9-2701-2016 |
* Zanchettin, D., M. Khodri, C. Timmreck, M. Toohey, A. Schmidt, E. P. Gerber, G. Hegerl, A. Robock et al. (2016): The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Mod. Dev., 9, 2701-2719, https://doi.org/10.5194/gmd-9-2701-2016 |
||
+ | * Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S. et al. (2016): On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models, Atmos. Chem. Phys., 16, 2765-2783, https://doi.org/10.5194/acp-16-2765-2016. |
||
== 2015 == |
== 2015 == |
||
⚫ | |||
− | * [http://www.sciencedirect.com/science/article/pii/S1352231015001533 Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2]. L. Giordano, D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel, G. Curci, R. Forkel, P. Jiménez-Guerrero, M. Hirtl, A. Hodzic, L. Honzak, O. Jorba, C. Knote, J.J.P. Kuenen, P.A. Makar, A. Manders-Groot, L. Neal, J.L. Pérez, G. Pirovano, G. Pouliot, R. San José, N. Savage, W. Schröder, R.S. Sokhi, D. Syrakov, A. Torian, P. Tuccella, J. Werhahn, R. Wolke, K. Yahya, R. Žabkar, Y. Zhang, S. Galmarini, Atmospheric Environment, Available online 12 February 2015, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2015.02.034. |
||
+ | * Dhomse, S. S., M. P. Chipperfield, W. Feng, R. Hossaini, G. W. Mann and M. L. Santee (2015): Revisiting the hemispheric asymmetry in mid-latitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophys. Res. Lett., vol. 42(8), 3038-3047, https://doi.org/10.1002/2015GL063052. |
||
− | * [http://www.atmos-chem-phys.net/15/5611/2015/acp-15-5611-2015.html Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions]. Pope, R. J., Chipperfield, M. P., Savage, N. H., Ordóñez, C., Neal, L. S., Lee, L. A., Dhomse, S. S., Richards, N. A. D., and Keslake, T. D. Atmos. Chem. Phys., 15, 5611-5626, doi:10.5194/acp-15-5611-2015, 2015. |
||
+ | * Giordano, L., D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel et al. (2015): Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2, Atmos. Env., vol. 115, 371-388, https://doi.org/10.1016/j.atmosenv.2015.02.034. |
||
− | * [http://journals.ametsoc.org/doi/full/10.1175/JCLI-D-15-0075.1 Processes controlling tropical tropopause temperature and stratospheric water vapour]. Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners, S. F. Milton, C. J. Morcrette, F. M. O'Connor, B. J. Shipway, C. Smith, D. N. Walters, K. D. Williams, N. Wood, N. L. Abraham, J. M. Keeble, A. C. Maycock, J. Thurburn, and M. T. Woodhouse. J. Climate, 28, 6516-6535. doi: http://dx.doi.org/10.1175/JCLI-D-15-0075.1, 2015. |
||
+ | * Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. (2015): Wet scavenging limits the detection of aerosol effects on precipitation, Atmos. Chem. Phys., 15, 7557-7570, https://doi.org/10.5194/acp-15-7557-2015. |
||
− | * [http://www.atmos-chem-phys.net/15/11201/2015/acp-15-11201-2015.html The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2]. Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. Atmos. Chem. Phys., 15, 11201-11215, doi:10.5194/acp-15-11201-2015, 2015. |
||
+ | * Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners et al. (2015): Processes controlling tropical tropopause temperature and stratospheric water vapour, J. Climate, 28, 6516-6535, https://doi.org/10.1175/JCLI-D-15-0075.1 |
||
− | * [http://www.atmos-chem-phys.net/15/7557/2015/acp-15-7557-2015.html Wet scavenging limits the detection of aerosol effects on precipitation]. Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. Atmos. Chem. Phys., 15, 7557-7570, doi:10.5194/acp-15-7557-2015, 2015. |
||
+ | * Mann, G. W., Dhomse, S., Deshler T., Timmreck, C, Schmidt A, Neely, R and Thomason, L. (2015): Evolving particle size is the key to improved volcanic forcings, Past Global Change, 23(2), 52-53, https://doi.org/10.22498/pages.23.2.52 |
||
− | * [http://www.atmos-chem-phys-discuss.net/15/23683/2015/acpd-15-23683-2015.html On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models]. Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S., Takeamura, T., Gettelman, A., Morrison, H., Lee, Y. H., Shindell, D. T., Partridge, D. G., Stier, P., Kipling, Z., and Fu, C. Atmos. Chem. Phys. Discuss., 15, 23683-23729, doi:10.5194/acpd-15-23683-2015, 2015. |
||
+ | * Planche C., J. H. Marsham, P. R. Field, K. S. Carslaw, A. A. Hill, G. W. Mann and B. J. Shipway (2015): Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model, Q. J. Roy. Meteorol. Soc., vol. 141(691), 2032-2044, https://doi.org/10.1002/qj.2497. |
||
− | * [http://www.atmos-chem-phys-discuss.net/15/25933/2015/acpd-15-25933-2015.html What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II]. Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T., Ghan, S. J., Iversen, T., Kirkevåg, A., Kokkola, H., Liu, X., Luo, G., van Noije, T., Pringle, K. J., von Salzen, K., Schulz, M., Seland, Ø., Skeie, R. B., Takemura, T., Tsigaridis, K., and Zhang, K. Atmos. Chem. Phys. Discuss., 15, 25933-25980, doi:10.5194/acpd-15-25933-2015, 2015. |
||
+ | * Pope, R. J., M. P. Chipperfield, N. H. Savage, C. Ordóñez, L. S. Neal, L. A. Lee, S. S. Dhomse, N. A. D. Richards and T. D. Keslake (2015): Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions, Atmos. Chem. Phys., 15, 5611-5626, https://doi.org/10.5194/acp-15-5611-2015. |
||
⚫ | |||
+ | * Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. (2015): The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2, Atmos. Chem. Phys., 15, 11201-11215, https://doi.org/10.5194/acp-15-11201-2015. |
||
+ | * Regayre, L. A., K. J. Pringle, L. A. Lee, A. Rap, J. Browse, G. W. Mann, C. L. Reddington, K. S. Carslaw, B. B. B. Booth and M. T. Woodhouse (2015): The climatic importance of uncertainties in regional aerosol-cloud radiative forcings over recent decades, J. Climate, vol. 28(17), 6589-6607, http://doi.org/10.1175/JCLI-D-15-0127.1 |
||
+ | * Scott, C. E., D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster et al. (2015): Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 15, 12989-13001, https://doi.org/10.5194/acp-15-12989-2015. |
||
+ | * Turnock, S. T., D. V. Spracklen. K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson et al. (2015): Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009, Atmos. Chem. Phys., 15, 9477-9500, https://doi.org/doi:10.5194/acp-15-9477-2015. |
||
* Zeng, G., J. E. Williams, J. A. Fisher, L. K. Emmons, N. B. Jones, O. Morgenstern, et. al. (2015), Multi-model simulation of CO and HCHO in the Southern Hemisphere: biogenic emissions and model uncertainties, Atmos. Chem. Phys., 15, 7217-7245, doi:10.5194/acp-15-7217-2015. |
* Zeng, G., J. E. Williams, J. A. Fisher, L. K. Emmons, N. B. Jones, O. Morgenstern, et. al. (2015), Multi-model simulation of CO and HCHO in the Southern Hemisphere: biogenic emissions and model uncertainties, Atmos. Chem. Phys., 15, 7217-7245, doi:10.5194/acp-15-7217-2015. |
||
== 2014 == |
== 2014 == |
||
+ | * Breider, T. J., M. P. Chipperfield, G. W. Mann, M. T. Woodhouse and K. S. Carslaw (2014): Suppression of CCN formation by bromine chemistry in the remote marine atmosphere, Atmos. Sci. Lett., 16(2), 141-147, https://doi.org/10.1002/asl2.539 |
||
− | * [http://onlinelibrary.wiley.com/doi/10.1002/2013JD021097/abstract Multi-model estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future] Chipperfield, M.P., Q. Liang, S. E. Strahan, O. Morgenstern, S.S. Dhomse, N.L. Abraham, A.T. Archibald, S. Bekki, P. Braesicke, G. Di Genova, E.L. Fleming, S.C. Hardiman, D. Iachetti, C.H. Jackman, D.E. Kinnison, M. Marchand, G. Pitari, J.A. Pyle, E. Rozanov, A. Stenke and F. Tummon, J. Geophys. Res. Atmos., 119, 5, 2555-2573, doi:10.1002/2013JD021097, 2014. |
||
+ | * Browse, J., K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, C. Leck. (2014): The complex response of Arctic aerosol to sea-ice retreat, Atmos. Chem. Phys., 14, 7543-7557, https://doi.org/10.5194/acp-14-7543-2014. |
||
− | * [http://onlinelibrary.wiley.com/doi/10.1002/2014GL062140/abstract Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases] O. Morgenstern, G. Zeng, S. M. Dean, M. Joshi, N. L. Abraham, and A. Osprey, Geophys. Res. Lett., 41, 9050–9057, doi:10.1002/2014GL062140, 2014. |
||
+ | * Brunner, D., N. Savage, O. Jorba, B. Eder, L. Giordano, A. Badia, A. Balzarini, R. Baró, R. Bianconi, C. Chemel et al. (2014): Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2, Atmos. Env., vol. 115, 470-498, https://doi.org/10.1016/j.atmosenv.2014.12.032. |
||
− | * [http://www.atmos-chem-phys.net/14/13257/2014/acp-14-13257-2014.html First comparison of the HadGEM2 climate-chemistry model against SCIAMACHY atmospheric methane columns] G.D. Hayman, F.M. O'Connor, M. Dalvi, D.B. Clark, C. Huntingford, N. Gedney, C. Prigent, M. Buchwitz, O. Schneising, and J.P. Burrows, Atmos. Chem. Phys., 14, 13257-13280, 2014. |
||
+ | * Chipperfield, M.P., Q. Liang, S. E. Strahan, O. Morgenstern, S.S. Dhomse, N.L. Abraham, A.T. Archibald, S. Bekki et al. (2014): Multi-model estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future, J. Geophys. Res. Atmos., 119, 5, 2555-2573, https://doi.org/10.1002/2013JD021097. |
||
− | * [http://www.atmos-chem-phys.net/14/11221/2014/acp-14-11221-2014.html Whole-atmosphere aerosol microphysics simulations of the Mt Pinatubo eruption with the UKCA composition-climate model] Dhomse S. S., K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, N. L. Abraham, P. Telford, P. Braesicke, M. Dalvi, C. E. Johnson, F. M. O'Connor, O. Morgenstern, R. Hommel, and J. A. Pyle, Atmos. Chem. Phys., 14, 11221-11246, 2014. |
||
− | * |
+ | * Dhomse S. S., K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, N. L. Abraham, et al. (2014), Aerosol microphysics simulations of the Mt Pinatubo eruption with the UKCA composition-climate model, Atmos. Chem. Phys., 14, 11221-11246, https://doi.org/10.5194/acp-14-11221-2014. |
+ | * Hayman, G. D., F. M. O'Connor, M. Dalvi, D. B. Clark, C. Huntingford, N. Gedney, C. Prigent, M. Buchwitz, O. Schneising and J. P. Burrows (2014): Comparison of the HadGEM2 climate-chemistry model against SCIAMACHY atmospheric methane columns, Atmos. Chem. Phys., 14, 13257-13280, 2014, https://doi.org/10.5194/acp-14-13257-2014. |
||
− | * [http://http://www.atmos-chem-phys.net/14/6035/2014/acp-14-6035-2014.html Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection] Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L., Archibald, A. T., Braesicke, P., Pyle, J. A., McGregor, J., Watson, I. M., Cox, R. A., and Kalberer, M., Atmos. Chem. Phys., 14, 6035-6048, 2014. |
||
+ | * Im, U., R. Bianconi, E. Solazzo, I. Kioutsioukis, A. Badia, A. Balzarini, R. Baró, R. Bellasio, D. Brunner, C. Chemel et al. (2014): Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone, Atmos. Env., vol. 115, 404-420, https://doi.org/10.1016/j.atmosenv.2014.09.042. |
||
⚫ | * |
||
+ | * Im, U., R. Bianconi, E. Solazzo, I. Kioutsioukis, A. Badia, A. Balzarini, R. Baró, R. Bellasio, D. Brunner, C. Chemel et al. (2014): Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter, Atmos. Env., vol. 115, pp. 421-441, https://doi.org/10.1016/j.atmosenv.2014.08.072. |
||
− | * [http://www.geosci-model-dev.net/7/41/2014/gmd-7-41-2014.html Evaluation of the new UKCA climate-composition model. Part II. The troposphere]. F.M. O'Connor, C.E. Johnson, O. Morgenstern, N.L. Abraham, P. Braesicke, M. Dalvi, G.A. Folberth, M.G. Sanderson, P.J. Telford, A. Voulgarakis, P.J. Young, G. Zeng, W.J. Collins, and J.A. Pyle, Geosci. Model Dev., 7, 41-91, 2014. |
||
− | * |
+ | * Jiao, C., M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin et al. (2014): An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., vol. 14(5), 2399-2417, https://doi.org/10.5194/acp-14-2399-2014. |
+ | * Mann, G. W., K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee et al. (2014): Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity, Atmos. Chem. Phys. vol. 14(9), 4679-4713, https://doi.org/10.5194/acp-14-4679-2014. |
||
− | * [http://www.sciencedirect.com/science/article/pii/S1352231014006967 Application of a statistical post-processing technique to a gridded, operational, air quality forecast]. L.S. Neal, P. Agnew, S. Moseley, C. Ordóñez, N.H. Savage, M. Tilbee, Atmospheric Environment, Volume 98, December 2014, Pages 385-393, ISSN 1352-2310, doi:10.1016/j.atmosenv.2014.09.004. |
||
+ | * Morgenstern, O., G. Zeng, S. M. Dean, M. Joshi, N. L. Abraham, and A. Osprey (2014): Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases, Geophys. Res. Lett., 41, 9050–9057, https://doi.org/10.1002/2014GL062140. |
||
− | * [http://www.sciencedirect.com/science/article/pii/S1352231014007353 Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone]. Ulas Im, Roberto Bianconi, Efisio Solazzo, Ioannis Kioutsioukis, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Alma Hodzic, Luka Honzak, Oriol Jorba, Christoph Knote, Jeroen J.P. Kuenen, Paul A. Makar, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guido Pirovano, George Pouliot, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Alfreida Torian, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Khairunnisa Yahya, Rahela Zabkar, Yang Zhang, Junhua Zhang, Christian Hogrefe, Stefano Galmarini. Atmospheric Environment, Available online 16 September 2014, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2014.09.042. |
||
+ | * Neal, L. S. P. Agnew, S. Moseley, C. Ordóñez, N.H. Savage, M. Tilbee, Application of a statistical post-processing technique to a gridded, operational, air quality forecast, Atmos. Env., vol. 98, 385-393, https://doi.org/10.1016/j.atmosenv.2014.09.004. |
||
− | * [http://www.sciencedirect.com/science/article/pii/S1352231014006839 Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter]. Ulas Im, Roberto Bianconi, Efisio Solazzo, Ioannis Kioutsioukis, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Hugo Denier van der Gon, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Alma Hodzic, Luka Honzak, Oriol Jorba, Christoph Knote, Paul A. Makar, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guido Pirovano, George Pouliot, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Alfreida Torian, Paolo Tuccella, Kai Wang, Johannes Werhahn, Ralf Wolke, Rahela Zabkar, Yang Zhang, Junhua Zhang, Christian Hogrefe, Stefano Galmarini. Atmospheric Environment, Available online 28 August 2014, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2014.08.072. |
||
+ | * O'Connor, F. M., C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke, M. Dalvi, G. A. Folberth, M. G. Sanderson et al. (2014), Evaluation of the new UKCA climate-composition model. Part II. The troposphere. Geosci. Model Dev., 7, 41-91, 2014, https://doi.org/10.5194/gmd-7-41-2014. |
||
− | * [http://www.sciencedirect.com/science/article/pii/S1352231014009807 Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2]. Dominik Brunner, Nicholas Savage, Oriol Jorba, Brian Eder, Lea Giordano, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bianconi, Charles Chemel, Gabriele Curci, Renate Forkel, Pedro Jiménez-Guerrero, Marcus Hirtl, Alma Hodzic, Luka Honzak, Ulas Im, Christoph Knote, Paul Makar, Astrid Manders-Groot, Erik van Meijgaard, Lucy Neal, Juan L. Pérez, Guido Pirovano, Roberto San Jose, Wolfram Schröder, Ranjeet S. Sokhi, Dimiter Syrakov, Alfreida Torian, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Khairunnisa Yahya, Rahela Zabkar, Yang Zhang, Christian Hogrefe, Stefano Galmarini, Atmospheric Environment, Available online 15 December 2014, ISSN 1352-2310, http://dx.doi.org/10.1016/j.atmosenv.2014.12.032. |
||
+ | * Regayre, L. A., K. J. Pringle, B. B. B. Booth, L. A. Lee, G. W. Mann, J. Browse, M. T. Woodhouse, A. Rap, C. L. Reddington, K. S. Carslaw (2014): Uncertainty in the magnitude of aerosol‐cloud radiative forcing over recent decades, Geophys. Res. Lett. 41(24), 9040-9049, https://doi.org/10.1002/2014GL062029. |
||
+ | * Scott, C. E., A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen and P. Tunved (2014): The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14(1), 447-470, https://doi.org/10.5194/acp-14-447-2014. |
||
⚫ | * Squire, O. J., Archibald, A. T., Abraham, N. L., Beerling, D. J., Hewitt, C. N., Lathière, J., Pike, R. C., Telford, P. J., and Pyle, J. A., Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone, Atmos. Chem. Phys., 14, 1011-1024, http://doi.org/10.5194/acp-14-1011-2014. |
||
+ | * Stock, Z. S., Russo, M. R., and Pyle, J. A. (2014): Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model, Atmos. Chem. Phys., 14, 3899-3912, https://doi.org/10.5194/acp-14-3899-2014. |
||
+ | * Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L., Archibald, A. T., Braesicke, P., Pyle, J. A. et al. (2014): Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection, Atmos. Chem. Phys., 14, 6035-6048, https://doi.org/10.5194/acp-14-6035-2014. |
||
+ | * Tsigaridis K., N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin et al. (2014): The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys. vol. 14(19), 10845-10895, https://doi.org/10.5194/acp-14-10845-2014. |
||
+ | * West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., Partridge, D. G., and Kipling, Z. (2014): The importance of vertical velocity variability for estimates of the indirect aerosol effects, Atmos. Chem. Phys., 14, 6369-6393, https:/doi.org/10.5194/acp-14-6369-2014. |
||
== 2013 == |
== 2013 == |
Latest revision as of 15:29, 25 March 2021
List of UKCA Publications
Here is a list of Publications (by year) which use the UKCA Model:
2021
- Allen et al., Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions, Env. Res. Lett., https://iopscience.iop.org/article/10.1088/1748-9326/abe06b, 2021.
- Clyne et al., Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3317/2021/, 2021.
- Fenech et al., Future health burdens associated with emission changes in the UK, Sci. Total Environ., https://www.sciencedirect.com/science/article/abs/pii/S0048969721007038?dgcid=coauthor, 2021.
- Garfinkel et al., Influence of ENSO on entry stratospheric water vapor in CCMI models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/3725/2021/, 2021.
- Griffiths et al., Tropospheric ozone in CMIP6 simulations, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/4187/2021/, 2021.
- Keeble et al., Using machine learning to make computationally inexpensive projections of 21st Century stratospheric column ozone changes in the tropics, Frontiers in Earth Science, https://www.frontiersin.org/articles/10.3389/feart.2020.592667/full, 2021.
- Liu et al., Contrasting atmospheric ozone chemical environments in China: different effectiveness of emission control strategies regionally and across the globe, Atmos. Chem. Phys. Disc., https://acp.copernicus.org/preprints/acp-2020-1251/, In discussion, 2021.
- O'Connor et al., Assessment of the pre-industrial to present-day anthropogenic forcings in UKESM1, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/1211/2021/, 2021.
- Parrish et al., Anthropogenic Reversal of the Natural Ozone Gradient between Northern and Southern Mid-latitudes, Atmos. Chem. Phys. Disc., https://acp.copernicus.org/preprints/acp-2020-1198/, In discussion, 2020.
- Teixeira et al., Coupling interactive fire with atmospheric composition and climate in the UK Earth System Model, Geosci. Model Dev. Disc., https://gmd.copernicus.org/preprints/gmd-2020-298/, In discussion, 2021.
- Thornhill et al., Effective Radiative forcing from emissions of reactive gases and aerosols – a multimodel comparison, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/853/2021/, 2021.
- Thornhill, G., et al., Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/21/1105/2021/, 2021.
- Visioni et al., Seventeen years of ozone sounding at L’Aquila, Italy: evidence of mid-latitude stratospheric ozone recovery and tropospheric profile changes, Atmos. Chem. Phys., https://acp.copernicus.org/preprints/acp-2020-525/, In discussion, 2021.
2020
- Abalos et al., Future trends in stratosphere-to-troposphere transport in CCMI models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/6883/2020/, 2020.
- Ahamad et al., Ozone Trends from Two Decades of Ground Level Observation in Malaysia, Atmosphere, https://www.mdpi.com/2073-4433/11/7/755, 2020.
- Allen et al., Climate and air quality impacts due to mitigation of non-methane near-term climate forcers, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9641/2020/, 2020.
- Amos et al., Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9961/2020, 2020.
- Antuña-Marrero, J.-C., G.W. Mann, P. Keckhut, S. Avdyushin, B. Nardi and L.W. Thomason (2020): Shipborne lidar measurements showing the progression of the tropical reservoir of volcanic aerosol after the June 1991 Pinatubo eruption, Earth Sys. Sci. Data, vol. 12, 2843-2851, https://doi.org/10.5194/essd-12-2843-2020.
- Antuña-Marrero, J.-C., G.W. Mann, J. Barnes, A. Rodriguez-Vega, S. Shallcross, S. Dhomse, G. Giocco and G.W. Grams (2020): Recovery of the first ever multi-year lidar dataset of the stratospheric aerosol layer, from Lexington, MA, and Fairbanks, AK, January 1964 to July 1965, Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-246.
- Archibald, A.T., F.M. O'Connor, N.L. Abraham, S. Archer-Nicholls, M.P. Chipperfield, M. Dalvi, G.A. Folberth et al. (2020): Description and evaluation of the UKCA stratosphere-troposphere chemistry (UKCA StratTrop) as implemented in UKESM1, Geosci. Model Dev., vol. 13, 1223-1266, https://doi.org/10.5194/gmd-13-1223-2020.
- Archibald, A.T., S.T. Turnock, P.T. Griffiths, T. Cox, R.G. Derwent, C. Knote and M. Shin (2020): On the changes in surface ozone over the twenty-first century: sensitivity to changes in surface temperature and chemical mechanisms, Phil. Trans. Royal Soc. A, vol. 378, https://doi.org/10.1098/rsta.2019.0329.
- Dhomse, S.S., G.W. Mann, J.-C. Antuna-Marrero, S.E. Shallcross, M.P. Chipperfield, K.S. Carslaw, L. Marshall, N.L. Abraham, and C.E. Johnson (2020): Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds, Atmos. Chem. Phys., vol. 20, 13627-13654, https://doi.org/10.5194/acp-20-13627-2020.
- Griffiths, P. T., J. Keeble, Y.M. Shin, N.L. Abraham, A.T. Archibald, and J.A. Pyle (2020): On the changing role of the stratosphere on the tropospheric ozone budget: 1979–2010. Geophys. Res. Lett., 46, https://doi.org/10.1029/2019GL086901.
- Grosvenor, D.P. and K.S. Carslaw (2020): The decomposition of cloud–aerosol forcing in the UK Earth System Model (UKESM1), Atmos. Chem. Phys., vol. 20, 15681-15724, https://doi.org/10.5194/acp-20-15681-2020.
- Heimann, I., P.T. Griffiths, N.J. Warwick, N.L. Abraham, A.T. Archibald and J.A. Pyle: Methane Emissions in a Chemistry-Climate Model: Feedbacks and Climate Response, J. Adv. Earth Sys. Modeling, https://doi.org/10.1029/2019MS002019.
- Keeble, J., N.L. Abraham, A.T. Archibald, M.P. Chipperfield, S.S. Dhomse, P.T. Griffiths and J.A. Pyle (2020): Modelling the potential impacts of the recent, unexpected increase in CFC-11 emissions on total column ozone recovery, Atmos. Chem. Phys., vol. 20, 7153-7166, https://doi.org/10.5194/acp-20-7153-2020.
- Morgenstern, O., F.M. O'Connor, B.T. Johnson, G. Feng, J.P. Mulcahy, J. Williams, J. Teixeira, M. Michou, P. Nabat et al. (2020): Reappraisal of the climate impacts of ozone-depleting substances, Geophys. Res. Lett., 47, https://doi.org/10.1029/2020GL088295.
- Mulcahy, J.M., C. Johnson, C.G. Jones, A.C. Povey, C.E. Scott, A. Sellar, S.T. Turnock, M.T. Woodhouse, N.L. Abraham et al. (2020): Description and evaluation of aerosol in UKESM1 and HadGEM-GC3.1 CMIP6 historical simulations, Geosci. Model Dev., vol. 13, 6383-6423, https://doi.org/10.5194/gmd-13-6383-2020.
- Nicely et al., A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/1341/2020/, 2020.
- Orbe et al., Description and Evaluation of the specified-dynamics experiment in the Chemistry-Climate Model Initiative, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/3809/2020/, 2020.
- Robson et al., The Evaluation of the North Atlantic Climate System in UKESM1 Historical Simulations for CMIP6, J. Adv. Earth Sys. Modeling, https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020MS002126, 2020.
- Sellar et al., Implementation of UK Earth system models for CMIP6, J. Adv. Modelling Earth Sys., https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2019MS001946, 2020.
- Seo et al., The Impacts of Aerosol Emissions on Historical Climate in UKESM1, Atmosphere, https://www.mdpi.com/2073-4433/11/10/1095, 2020.
- Skeie et al., Historical total ozone radiative forcing derived from CMIP6 simulations, npj Climate Atmos. Sci., https://www.nature.com/articles/s41612-020-00131-0, 2020.
- Smith et al., Effective radiative forcing and adjustments in CMIP6 models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/9591/2020/, 2020.
- Stevenson et al., Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/12905/2020/, 2020.
- Turnock et al., Historical and future changes in air pollutants from CMIP6 models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/14547/2020/, 2020.
- Wade et al., Reconciling the climate and ozone response to the 1257 CE Mount Samalas eruption, Proc. Natl. Academy Sci., https://www.pnas.org/content/117/43/26651.short, 2020.
- Weber et al., Minimal Climate Impacts From Short-Lived Climate Forcers Following Emission Reductions Related to the COVID-19 Pandemic, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020GL090326, 2020.
- Weber et al., CRI-HOM: A novel chemical mechanism for simulating highly oxygenated organic molecules (HOMs) in global chemistry-aerosol-climate models, Atmos. Chem. Phys., https://acp.copernicus.org/articles/20/10889/2020/, 2020.
2019
- Dennison, F., J. Keeble, O. Morgenstern, G. Zeng, N. L. Abraham, and X. Yang (2019), Improvements to stratospheric chemistry in the UM-UKCA (v10.7) model: solar cycle and heterogeneous reactions, Geosci. Model Dev., 12, 1227-1239, https://doi.org/10.5194/gmd-12-1227-2019.
- Eichinger, R., and 20 others (2019), The influence of mixing on the stratospheric age of air changes in the 21st century, Atmos. Chem. Phys., 19, 921-940, https://doi.org/10.5194/acp-19-921-2019.
- Harari, O., C. I. Garfinkel, O. Morgenstern, D. Marsh, D. Kinnison, M. Deushi, P. Jöckel, and F. M. O’Connor (2019), Influence of Artic Stratospheric Ozone on Surface Climate in CCMI models, Atmos. Chem. Phys., to appear.
- Hakim, Z.Q., et al., Evaluation of tropospheric ozone and ozone precursors in simulations from the HTAPII and CCMI model intercomparisons - a focus on the Indian subcontinent, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/6437/2019/, 2019.
- Gillett, Z. E., and 13 others (2019), Evaluating the relationship between interannual variations in the Antarctic ozone hole and Southern Hemisphere surface climate in chemistry–climate models, J. Climate, 32, 3131–3151, https://doi.org/10.1175/JCLI-D-18-0273.1
- Kelly et al., The roles of volatile organic compound deposition and oxidation mechanisms in determining secondary organic aerosol production, a global perspective using the UKCA chemistry-climate model (vn8.4), Geosci. Model Dev., https://gmd.copernicus.org/articles/12/2539/2019/, 2019.
- Lamy, K., and 39 others (2019), Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative, Atmos. Chem. Phys., 19, 10,087–10,110, https://doi.org/10.5194/acp-19-10087-2019.
- Malavelle, F.F., et al., Studying the impact of biomass burning aerosol radiative and climate effects on the Amazon rainforest productivity with an Earth system model, https://acp.copernicus.org/articles/19/1301/2019/, 2019
- Marshall, L., J.S. Johnson, G.W. Mann, L.A. Lee, S.S. Dhomse, L.A. Regayre, M. Yoshioka, K.S Carslaw and A. Schmidt (2019): Exploring how eruption source parameters affect volcanic radiative forcing using statistical emulation, J. Geophys. Res.: Atmos., vol. 124, https://doi.org/10.1029/2018JD028675.
- McKenzie, R., G. Bernhard, B. Liley, P. Disterhoft, S. Rhodes, A. Bais, O. Morgenstern, P. Newman, C. Brogniez, and S. Simic (2019), Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models, Scientific Reports, 9, 12332, https://www.nature.com/articles/s41598-019-48625-z
- Polvani, L. M., and 12 others (2019), Large impacts, past and future, of ozone depleting substances on Brewer-Dobson circulation trends: A multi-model assessment, J. Geophys. Res. Atmos., 124, https://doi.org/10.1029/2018JD029516.
- Šácha, P., and 11 others (2019), Extratropical age of air trends and causative factors in climate projection simulations, Atmos. Chem. Phys., 19, 7627-7647, https://doi.org/10.5194/acp-19-7627-2019.
- Sellar, A., C. G. Jones, J. P. Mulcahy, Tang, Y., Yool, A., Wiltshire, A., O'Connor, F. M., Stringer, M. et al. (2019): "UKESM1: Description and evaluation of the U.K. Earth System Model", J. Adv. Modeling Earth Sys., vol. 11, issue 12, 4513-4558, https://doi.org/10.1029/2019MS001739
- Shi et al., Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”, Atmos. Chem. Phys., https://acp.copernicus.org/articles/19/7519/2019/, 2019.
- SPARC/IO3C/GAW, 2019: SPARC/IO3C/GAW report on Long-term Ozone Trends and Uncertainties in the Stratosphere. I. Petropavlovskikh, S. Godin-Beekmann, D. Hubert, R. Damadeo, B. Hassler, V. Sofieva (Eds.), SPARC Report No. 9, WCRP-17/2018, GAW Report No. 241, doi:10.17874/f899e57a20b, available at http://www.sparc-climate.org/publications/sparc-reports/sparc-report-no-9/.
- Turnock et al., The Impact of Changes in Cloud Water pH on Aerosol Radiative Forcing, Geophys. Res. Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019GL082067, 2019.
- Turnock et al., The impact of climate mitigation measures on near term climate forcers, Environ. Res. Lett., https://iopscience.iop.org/article/10.1088/1748-9326/ab4222, 2019.
- Turnock et al., 300 years of tropospheric ozone changes using CMIP6 scenarios with a parameterised approach, Atmos. Environ., https://www.sciencedirect.com/science/article/pii/S1352231019304443?via%3Dihub, 2019.
- Walters et al., The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations, Geosci. Model Dev., https://gmd.copernicus.org/articles/12/1909/2019/gmd-12-1909-2019.html, 2019.
- Yang, H., and 13 others (2019), Large-scale transport into the Arctic: the roles of the midlatitude jet and the Hadley Cell, Atmos. Chem. Phys., 19, 5511–5528, https://doi.org/10.5194/acp-19-5511-2019.
- Yoshioka et al., Ensembles of Global Climate Model Variants Designed for the Quantification and Constraint of Uncertainty in Aerosols and their Radiative Forcing, J. Adv. Modeling Earth Sys., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2019MS001628, 2019.
2018
- Arnold, S.R., et al., Simulated Global Climate Response to Tropospheric Ozone-Induced Changes in Plant Transpiration, Geophys. Res Lett., https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018GL079938, 2018.
- Ayarzagüena, B., and 26 others (2018), No robust evidence of future changes in major stratospheric sudden warmings: a multi-model assessment from CCMI, Atmos. Chem. Phys., 18, 11277-11287, https://doi.org/10.5194/acp-18-11277-2018.
- Dhomse, S. S., and 46 others (2018), Estimates of ozone return dates from Chemistry-Climate Model Initiative simulations, Atmos. Chem. Phys., 18, 8409-8438, doi:10.5194/acp-18-8409-2018, 2018.
- Dietmüller, S., and 22 others (2018), Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models, Atmos. Chem. Phys., 18, 6699-6720, doi:10.5194/acp-18-6699-2018.
- Hamilton, D., et al., Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing, Nature Comms., https://www.nature.com/articles/s41467-018-05592-9, 2018.
- Kelly et al., The impact of biogenic, anthropogenic, and biomass burning emissions on regional and seasonal variations in secondary organic aerosol concentrations, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/7393/2018/, 2018.
- Liang, C.-K., et al., HTAP2 multi-model estimates of premature human mortality due to intercontinental transport of air pollution and emission sectors, Atmos. Chem. Phys, https://acp.copernicus.org/articles/18/10497/2018/, 2018.
- Marshall et al., Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora, Atmos. Chem. Phys., https://acp.copernicus.org/articles/18/2307/2018/, 2018.
- Maycock, A. C., and 33 others (2018), Revisiting the mystery of recent stratospheric temperature trends, Geophys. Res. Lett., 45, 9919-9933, https://doi.org/10.1029/2018GL078035.
- Morgenstern, O., and 18 others (2018), Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI simulations, Atmos. Chem. Phys., 18, 1091–1114, https://doi.org/10.5194/acp-18-1091-2018.
- Mulcahy, J.P., C. Jones, A. Sellar, B. Johnson, I. A. Boutle, A. Jones, T. Andrews, S. T. Rumbold, J. Mollard, N. Bellouin, C. E. Johnson et al. (2018): Improved Aerosol Processes and Effective Radiative Forcing in HadGEM3 and UKESM1, J. Adv. Mod. Earth Systems, 10, 2786-2805, https://doi.org/10.1029/2018MS001464.
- Orbe, C., and 27 others (2018), Large-scale tropospheric transport in the Chemistry Climate Model Initiative (CCMI) simulations, Atmos. Chem. Phys., 18, 7217–7235, https://doi.org/10.5194/acp-18-7217-2018
- Revell, L. E., and 24 others (2018), Tropospheric ozone in CCMI models and Gaussian process emulation to understand biases in the SOCOLv3 chemistry–climate model, Atmos. Chem. Phys., 18, 16155-16172, https://doi.org/10.5194/acp-18-16155-2018.
- Timmreck, C., Mann, G.W., Aquila, V., Hommel, R., Lee, L.A., Schmidt, A., Bruehl, C., Carl, S. et al., The Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP): motivation and experimental design, Geosci. Model Dev., vol. 11, 2581-2608, https://doi.org/10.5194/gmd-11-2581-2018, 2018.
- Wales, P. A., and 48 other (2018). Stratospheric injection of brominated very short-lived substances: Aircraft observations in the Western Pacific and representation in global models. J. Geophys. Res. Atmos., 123, 5690–5719. https://doi.org/10.1029/2017JD027978.
- WMO (World Meteorological Organization), Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58, 588 pp., Geneva, Switzerland, 2018.
2017
- Anderson, D. C., J. M. Nicely, G. M. Wolfe, T. F. Hanisco, R. J. Salawitch, T. P. Canty et al. (2017): Formaldehyde in the Tropical Western Pacific: Chemical sources and sinks, convective transport, and representation in CAM-Chem and the CCMI models, J. Geophys. Res. Atmos., 122, 11,201–11,226 https://doi.org/10.1002/2016JD026121.
- Brooke, J. S. A., Feng, W., Carillo-Sanchez, J. D., Mann, G. W., James, A. D., Bardeen, C. G. et al. (2017): Meteoric smoke deposition in the polar regions: A comparison of measurements with global atmospheric models, J. Geophys. Res.: Atmos., 122, 11,112–11,130, https://doi.org/10.1002/2017JD027143.
- Butt, E. W., S. T. Turnock, R. Rigby, C. L. Reddington, M. Yoshioka, J. S. Johnson, L. A. Regayre et al. (2017): Global and regional trends in particulate air pollution and attributable health burden over the past 50 years, Environ. Res. Lett., vol. 12, no. 10, https://doi.org/10.1088/1748-9326/aa87be.
- Dennison, F., McDonald, A., and Morgenstern, O. (2017): The evolution of zonally asymmetric austral ozone in a chemistry–climate model, Atmos. Chem. Phys., 17, 14,075-14,084, https://doi.org/10.5194/acp-17-14075-2017.
- Hardiman, S. C., Butchart, N., O'Connor, F. M. and Rumbold, S. (2017): The Met Office HadGEM3-ES Chemistry-Climate Model: Evaluation of stratospheric dynamics and its impact on ozone, Geosci. Model Dev., 10, 1209-1232, https://doi.org/10.5194/gmd-10-1209-2017.
- Hopcroft, P. O., P. J. Valdes, F. M. O'Connor, Kaplan, J. O. and Beerling, D. J. (2017): Understanding the glacial atmospheric methane cycle, 8, 14383, https://doi.org/10.1038/ncomms14383.
- Liang, Q., M. P. Chipperfield, E. L. Fleming, N. L. Abraham, P. Braesicke, J. B. Burkholder et al. (2017): Deriving global OH abundance and atmospheric lifetimes for long-lived gases: A search for the alternative reference gas for CH3CCl3, J. Geophys. Res. Atmos.,122, https://doi.org/10.1002/2017JD026926.
- Malavelle, F. F., J. M. Haywood, A. Jones, A. Gettelman, L. Clarisse, S. Bauduin, R. P. Allen et al. (2017): Strong constraints on aerosol-cloud interactions from volcanic eruptions, Nature, 546, 485-491, https://doi.org/10.1038/nature22974.
- Morgenstern, O., M. I. Hegglin, E. Rozanov, F. M. O'Connor, N. L. Abraham, H. Akiyoshi, A. T. Archibald, S. Bekki et al. (2017): Review of the global models used within the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639-671, https://doi.org/10.5194/gmd-10-639-2017.
- Pannullo, F., D. Lee, L. Neal, M. Dalvi, P. Agnew, F. M. O'Connor, S. Mukhopadhyay, S. Sahu and C. Sarran (2017): Quantifying the impact of current and future air pollution concentrations on respiratory disease risk in England, Environ. Health, vol. 16, no. 19 https://doi.org/10.1186/s12940-017-0237-1.
- Planche, C., G. W. Mann, K. S. Carslaw, M. Dalvi, J. H. Marsham and P. R. Field (2017): Spatial and temporal CCN variations in convection-permitting aerosol microphysics simulations in an idealised marine tropical domain, Atmos. Chem. Phys., 17, 3371-3384, https://doi.org/10.5194/acp-17-3371-2017.
- Reddington, C., K. S. Carslaw, P. Stier, N. Schutgens, H. Coe, D. Liu, J. Allan, J. Browse, K. J. Pringle, L. A. Lee et al. (2017): The global aerosol synthesis and science project (GASSP): Measurements and modelling to reduce uncertainty, Bull. Amer. Meteorol. Soc., 98, 1857-1877, https://doi.org/10.1175/BAMS-D-15-00317.1.
- Son, S.-W., B.-R. Han, C. I. Garfinkel, S.-Y. Kim, R. Park, N. L. Abraham, H. Akiyoshi, A. T. Archibald et al. (2017): Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models, Environ. Res. Lett., 13, 054024, https://doi.org/10.1088/1748-9326/aabf21.
- Zhang, J., W. Tian, F. Xie, M. P. Chipperfield, W. Feng, S.-W. Son, N. L. Abraham, A. T. Archibald, S. Bekki et al. (2017): Stratospheric ozone loss over the Eurasian continent induced by the polar vortex shift, Nature Comms., 9, 206, https://doi.org/10.1038/s41467-017-02565-2.
- Zeng, G., O. Morgenstern, H. Shiona, A. J. Thomas, R. R. Querel and S. E. Nichol (2017): Attribution of recent ozone changes in the Southern Hemisphere mid-latitudes using statistical analysis and chemistry–climate model simulations, Atmos. Chem. Phys., 17, 10,495-10,513, https://doi.org/10.5194/acp-17-10495-2017.
2016
- Behrens, E., G. Rickard, O. Morgenstern, T. Martin, A. Osprey, and M. Joshi (2016): Southern Ocean deep convection in global climate models: A driver for variability of subpolar gyres and Drake Passage transport on decadal timescales, J. Geophys. Res. Oceans, 121, 3905–3925, https://doi.org/10.1002/2015JC011286.
- Benduhn, F., G. W. Mann, Pringle, K. J., Topping, D. O., McFiggans, G. and K. S. Carslaw (2016): Size-resolved simulations of the aerosol inorganic composition with the new hybrid dissolution solver HyDiS-1.0: description, evaluation and first global modelling results, Geosci. Mod. Dev., 9, 3875-3906, https://doi.org/10.5194/gmd-9-3875-2016.
- Dennison, F. W., A. J. McDonald, and O. Morgenstern (2016): The influence of ozone forcing on blocking in the Southern Hemisphere, J. Geophys. Res. Atmos., 121, https://doi.org/10.1002/2016JD025033.
- Dunne, E. M., H. Gordon, A. Kürten, J. Almeida, J. Duplissy, C. Williamson, I. K. Ortega, K. J. Pringle et al. (2016): Global atmospheric particle formation from CERN CLOUD measurements, Science, vol. 354, 6316, 1119-1124, https://doi.org/10.1126/science.aaf2649.
- Johnson, B. T., J. M. Haywood, J. M. Langridge, E. Darbyshire, W. T. Morgan, K. Szpek, J. K. Brooke, F. Marenco, H. Coe et al. (2016): Evaluation of biomass burning aerosols in the HadGEM3 climate model with observations from the SAMBBA field campaign, Atmos. Chem. Phys., 16, 14657-14685, https://doi.org/10.5194/acp-16-14657-2016.
- Kapadia, Z. Z., D. V. Spracklen, S. R. Arnold, D. J. Borman, G. W. Mann, K. J. Pringle, S. A. Monks et al. (2016): Impacts of aviation fuel sulfur content on climate and human health, Atmos. Chem. Phys., 16, 10521-10541, https://doi.org/10.5194/acp-16-10521-2016.
- Kipling, Z., Stier, P., Johnson, C. E., Mann, G. W., Bellouin, N., Bauer, S. E., Bergman, T., Chin, M., Diehl, T. et al. (2015): What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II, Atmos. Chem. Phys., 16, 2765-2783, http://doi.org/10.5194/acp-16-2221-2016.
- López-Comí, L., O. Morgenstern, G. Zeng, S. L. Masters, R. R. Querel, and G. E. Nedoluha (2016): Assessing the sensitivity of the hydroxyl radical to model biases in composition and temperature using a single-column photochemical model for Lauder, New Zealand, Atmos. Chem. Phys., 16, 14599-14619, https://doi.org/10.5194/acp-16-14599-2016.
- Oberländer-Hayn, S., et al. (2016), Is the Brewer-Dobson circulation increasing or moving upward?, Geophys. Res. Lett., 43, https://doi.org/10.1002/2015GL067545.
- Schmidt A., R. A. Skeffington, T. Thordarson, S. Self, P. M. Forster, A. Rap, A. Ridgwell, D. Fowler, B. M. Wilson, G. W. Mann, P. B. Wignall and K. S. Carslaw (2016): Selective environmental stress from sulphur emitted by continental flood basalt eruptions, Nature Geoscience, vol. 9, 77-82, https://doi.org/10.1038/NGEO2588.
- Stone, K. A., O. Morgenstern, D. J. Karoly, A. R. Klekociuk, W. J. French, N. L. Abraham, and R. Schofield (2016): Evaluation of the ACCESS – chemistry–climate model for the Southern Hemisphere, Atmos. Chem. Phys., 16, 2401-2415, doi:10.5194/acp-16-2401-2016.
- Turnock, S. T., E. W. Butt, T. B. Richardson, G. W. Mann, C. L. Reddington, P. M. Forster, J. Haywood et al. (2016): The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate, Env. Res. Lett., 11, https://doi.org/10.1088/1748-9326/11/2/024010.
- Zanchettin, D., M. Khodri, C. Timmreck, M. Toohey, A. Schmidt, E. P. Gerber, G. Hegerl, A. Robock et al. (2016): The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): experimental design and forcing input data for CMIP6, Geosci. Mod. Dev., 9, 2701-2719, https://doi.org/10.5194/gmd-9-2701-2016
- Zhang, S., Wang, M., Ghan, S. J., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S. et al. (2016): On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models, Atmos. Chem. Phys., 16, 2765-2783, https://doi.org/10.5194/acp-16-2765-2016.
2015
- Dennison, F., A. J. McDonald, and O. Morgenstern (2015), The effect of ozone depletion on the Southern Annular Mode and stratosphere-troposphere coupling, J. Geophys. Res., Atmos., 120, 6305–6312, http://doi.org/10.1002/2014JD023009.
- Dhomse, S. S., M. P. Chipperfield, W. Feng, R. Hossaini, G. W. Mann and M. L. Santee (2015): Revisiting the hemispheric asymmetry in mid-latitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophys. Res. Lett., vol. 42(8), 3038-3047, https://doi.org/10.1002/2015GL063052.
- Giordano, L., D. Brunner, J. Flemming, C. Hogrefe, U. Im, R. Bianconi, A. Badia, A. Balzarini, R. Baró, C. Chemel et al. (2015): Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2, Atmos. Env., vol. 115, 371-388, https://doi.org/10.1016/j.atmosenv.2015.02.034.
- Gryspeerdt, E., Stier, P., White, B. A., and Kipling, Z. (2015): Wet scavenging limits the detection of aerosol effects on precipitation, Atmos. Chem. Phys., 15, 7557-7570, https://doi.org/10.5194/acp-15-7557-2015.
- Hardiman, S. C., I. A. Boutle, A. C. Bushell, N. Butchart, M. J. P. Cullen, P. R. Field, K. Furtado, J. C. Manners et al. (2015): Processes controlling tropical tropopause temperature and stratospheric water vapour, J. Climate, 28, 6516-6535, https://doi.org/10.1175/JCLI-D-15-0075.1
- Mann, G. W., Dhomse, S., Deshler T., Timmreck, C, Schmidt A, Neely, R and Thomason, L. (2015): Evolving particle size is the key to improved volcanic forcings, Past Global Change, 23(2), 52-53, https://doi.org/10.22498/pages.23.2.52
- Planche C., J. H. Marsham, P. R. Field, K. S. Carslaw, A. A. Hill, G. W. Mann and B. J. Shipway (2015): Precipitation sensitivity to autoconversion rate in a numerical weather-prediction model, Q. J. Roy. Meteorol. Soc., vol. 141(691), 2032-2044, https://doi.org/10.1002/qj.2497.
- Pope, R. J., M. P. Chipperfield, N. H. Savage, C. Ordóñez, L. S. Neal, L. A. Lee, S. S. Dhomse, N. A. D. Richards and T. D. Keslake (2015): Evaluation of a regional air quality model using satellite column NO2: treatment of observation errors and model boundary conditions and emissions, Atmos. Chem. Phys., 15, 5611-5626, https://doi.org/10.5194/acp-15-5611-2015.
- Pope, R. J., Savage, N. H., Chipperfield, M. P., Ordóñez, C., and Neal, L. S. (2015): The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2, Atmos. Chem. Phys., 15, 11201-11215, https://doi.org/10.5194/acp-15-11201-2015.
- Regayre, L. A., K. J. Pringle, L. A. Lee, A. Rap, J. Browse, G. W. Mann, C. L. Reddington, K. S. Carslaw, B. B. B. Booth and M. T. Woodhouse (2015): The climatic importance of uncertainties in regional aerosol-cloud radiative forcings over recent decades, J. Climate, vol. 28(17), 6589-6607, http://doi.org/10.1175/JCLI-D-15-0127.1
- Scott, C. E., D. V. Spracklen, J. R. Pierce, I. Riipinen, S. D. D'Andrea, A. Rap, K. S. Carslaw, P. M. Forster et al. (2015): Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 15, 12989-13001, https://doi.org/10.5194/acp-15-12989-2015.
- Turnock, S. T., D. V. Spracklen. K. S. Carslaw, G. W. Mann, M. T. Woodhouse, P. M. Forster, J. Haywood, C. E. Johnson et al. (2015): Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009, Atmos. Chem. Phys., 15, 9477-9500, https://doi.org/doi:10.5194/acp-15-9477-2015.
- Zeng, G., J. E. Williams, J. A. Fisher, L. K. Emmons, N. B. Jones, O. Morgenstern, et. al. (2015), Multi-model simulation of CO and HCHO in the Southern Hemisphere: biogenic emissions and model uncertainties, Atmos. Chem. Phys., 15, 7217-7245, doi:10.5194/acp-15-7217-2015.
2014
- Breider, T. J., M. P. Chipperfield, G. W. Mann, M. T. Woodhouse and K. S. Carslaw (2014): Suppression of CCN formation by bromine chemistry in the remote marine atmosphere, Atmos. Sci. Lett., 16(2), 141-147, https://doi.org/10.1002/asl2.539
- Browse, J., K. S. Carslaw, G. W. Mann, C. E. Birch, S. R. Arnold, C. Leck. (2014): The complex response of Arctic aerosol to sea-ice retreat, Atmos. Chem. Phys., 14, 7543-7557, https://doi.org/10.5194/acp-14-7543-2014.
- Brunner, D., N. Savage, O. Jorba, B. Eder, L. Giordano, A. Badia, A. Balzarini, R. Baró, R. Bianconi, C. Chemel et al. (2014): Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2, Atmos. Env., vol. 115, 470-498, https://doi.org/10.1016/j.atmosenv.2014.12.032.
- Chipperfield, M.P., Q. Liang, S. E. Strahan, O. Morgenstern, S.S. Dhomse, N.L. Abraham, A.T. Archibald, S. Bekki et al. (2014): Multi-model estimates of atmospheric lifetimes of long-lived ozone-depleting substances: Present and future, J. Geophys. Res. Atmos., 119, 5, 2555-2573, https://doi.org/10.1002/2013JD021097.
- Dhomse S. S., K. M. Emmerson, G. W. Mann, N. Bellouin, K. S. Carslaw, M. P. Chipperfield, N. L. Abraham, et al. (2014), Aerosol microphysics simulations of the Mt Pinatubo eruption with the UKCA composition-climate model, Atmos. Chem. Phys., 14, 11221-11246, https://doi.org/10.5194/acp-14-11221-2014.
- Hayman, G. D., F. M. O'Connor, M. Dalvi, D. B. Clark, C. Huntingford, N. Gedney, C. Prigent, M. Buchwitz, O. Schneising and J. P. Burrows (2014): Comparison of the HadGEM2 climate-chemistry model against SCIAMACHY atmospheric methane columns, Atmos. Chem. Phys., 14, 13257-13280, 2014, https://doi.org/10.5194/acp-14-13257-2014.
- Im, U., R. Bianconi, E. Solazzo, I. Kioutsioukis, A. Badia, A. Balzarini, R. Baró, R. Bellasio, D. Brunner, C. Chemel et al. (2014): Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone, Atmos. Env., vol. 115, 404-420, https://doi.org/10.1016/j.atmosenv.2014.09.042.
- Im, U., R. Bianconi, E. Solazzo, I. Kioutsioukis, A. Badia, A. Balzarini, R. Baró, R. Bellasio, D. Brunner, C. Chemel et al. (2014): Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter, Atmos. Env., vol. 115, pp. 421-441, https://doi.org/10.1016/j.atmosenv.2014.08.072.
- Jiao, C., M. G. Flanner, Y. Balkanski, S. E. Bauer, N. Bellouin, T. K. Berntsen, H. Bian, K. S. Carslaw, M. Chin et al. (2014): An AeroCom assessment of black carbon in Arctic snow and sea ice, Atmos. Chem. Phys., vol. 14(5), 2399-2417, https://doi.org/10.5194/acp-14-2399-2014.
- Mann, G. W., K. S. Carslaw, C. L. Reddington, K. J. Pringle, M. Schulz, A. Asmi, D. V. Spracklen, D. A. Ridley, M. T. Woodhouse, L. A. Lee et al. (2014): Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity, Atmos. Chem. Phys. vol. 14(9), 4679-4713, https://doi.org/10.5194/acp-14-4679-2014.
- Morgenstern, O., G. Zeng, S. M. Dean, M. Joshi, N. L. Abraham, and A. Osprey (2014): Direct and ozone-mediated forcing of the Southern Annular Mode by greenhouse gases, Geophys. Res. Lett., 41, 9050–9057, https://doi.org/10.1002/2014GL062140.
- Neal, L. S. P. Agnew, S. Moseley, C. Ordóñez, N.H. Savage, M. Tilbee, Application of a statistical post-processing technique to a gridded, operational, air quality forecast, Atmos. Env., vol. 98, 385-393, https://doi.org/10.1016/j.atmosenv.2014.09.004.
- O'Connor, F. M., C. E. Johnson, O. Morgenstern, N. L. Abraham, P. Braesicke, M. Dalvi, G. A. Folberth, M. G. Sanderson et al. (2014), Evaluation of the new UKCA climate-composition model. Part II. The troposphere. Geosci. Model Dev., 7, 41-91, 2014, https://doi.org/10.5194/gmd-7-41-2014.
- Regayre, L. A., K. J. Pringle, B. B. B. Booth, L. A. Lee, G. W. Mann, J. Browse, M. T. Woodhouse, A. Rap, C. L. Reddington, K. S. Carslaw (2014): Uncertainty in the magnitude of aerosol‐cloud radiative forcing over recent decades, Geophys. Res. Lett. 41(24), 9040-9049, https://doi.org/10.1002/2014GL062029.
- Scott, C. E., A. Rap, D. V. Spracklen, P. M. Forster, K. S. Carslaw, G. W. Mann, K. J. Pringle, N. Kivekäs, M. Kulmala, H. Lihavainen and P. Tunved (2014): The direct and indirect radiative effects of biogenic secondary organic aerosol, Atmos. Chem. Phys., 14(1), 447-470, https://doi.org/10.5194/acp-14-447-2014.
- Squire, O. J., Archibald, A. T., Abraham, N. L., Beerling, D. J., Hewitt, C. N., Lathière, J., Pike, R. C., Telford, P. J., and Pyle, J. A., Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone, Atmos. Chem. Phys., 14, 1011-1024, http://doi.org/10.5194/acp-14-1011-2014.
- Stock, Z. S., Russo, M. R., and Pyle, J. A. (2014): Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model, Atmos. Chem. Phys., 14, 3899-3912, https://doi.org/10.5194/acp-14-3899-2014.
- Tang, M. J., Telford, P. J., Pope, F. D., Rkiouak, L., Abraham, N. L., Archibald, A. T., Braesicke, P., Pyle, J. A. et al. (2014): Heterogeneous reaction of N2O5 with airborne TiO2 particles and its implication for stratospheric particle injection, Atmos. Chem. Phys., 14, 6035-6048, https://doi.org/10.5194/acp-14-6035-2014.
- Tsigaridis K., N. Daskalakis, M. Kanakidou, P. J. Adams, P. Artaxo, R. Bahadur, Y. Balkanski, S. E. Bauer, N. Bellouin et al. (2014): The AeroCom evaluation and intercomparison of organic aerosol in global models, Atmos. Chem. Phys. vol. 14(19), 10845-10895, https://doi.org/10.5194/acp-14-10845-2014.
- West, R. E. L., Stier, P., Jones, A., Johnson, C. E., Mann, G. W., Bellouin, N., Partridge, D. G., and Kipling, Z. (2014): The importance of vertical velocity variability for estimates of the indirect aerosol effects, Atmos. Chem. Phys., 14, 6369-6393, https:/doi.org/10.5194/acp-14-6369-2014.
2013
- Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model. N. Bellouin, G. W. Mann, M. T. Woodhouse, C. Johnson, K. S. Carslaw, and M. Dalvi, Atmos. Chem. Phys., 13, 3027-3044, doi:10.5194/acp-13-3027-2013, 2013.
- Consistent circulation differences in the Southern Hemisphere caused by ozone changes: a chemistry-climate model and observational study Braesicke, P., Keeble, J., Yang, X., Stiller, G., Kellmann, S., Abraham, N. L., Archibald, A. T., Telford, P., and Pyle, J. A. Atmos. Chem. Phys. Discuss., 13, 8455-8487, doi:10.5194/acpd-13-8455-2013, 2013.
- Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon. Z. Kipling, P. Stier, J. P. Schwarz, A. E. Perring, J. R. Spackman, G. W. Mann, C. E. Johnson, and P. J. Telford, Atmos. Chem. Phys., 13, 5969-5986, doi:10.5194/acp-13-5969-2013, 2013.
- Impacts of climate change, ozone recovery, and increasing methane on surface ozone and the tropospheric oxidizing capacity O. Morgenstern, G. Zeng, N. L. Abraham, P. J. Telford, P. Braesicke, J. A. Pyle, S. C. Hardiman, F. M. O'Connor, and C. E. Johnson, J. Geophys. Res., Atmos., 118, 2, 1028–1041, 2013.
- Evaluation of the new UKCA climate-composition model. Part II. The troposphere. F.M. O'Connor, C.E. Johnson, O. Morgenstern, N.L. Abraham, P. Braesicke, M. Dalvi, G.A. Folberth, M.G. Sanderson, P.J. Telford, P.J. Young, G. Zeng, W.J. Collins, and J.A. Pyle, Geosci. Model Dev. Disc., 6, 1743-1857, 2013.
- Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation. Savage, N. H., Agnew, P., Davis, L. S., Ordóñez, C., Thorpe, R., Johnson, C. E., O'Connor, F. M., and Dalvi, M., Geosci. Model Dev., 6, 353-372, doi:10.5194/gmd-6-353-2013, 2013.
- Influence of future climate and cropland expansion on isoprene emissions and tropospheric ozone Squire, O. J., Archibald, A. T., Beerling, D. J., Hewitt, C. N., Lathière, J., Pike, R. C., Telford, P. J., and Pyle, J. A. Atmos. Chem. Phys. Discuss., 13, 18307-18344, doi:10.5194/acpd-13-18307-2013, 2013.
- Modelling the impact of megacities on local, regional and global tropospheric ozone and the deposition of nitrogen species. Stock, Z. S., Russo, M. R., Butler, T. M., Archibald, A. T., Lawrence, M. G., Telford, P. J., Abraham, N. L., and Pyle, J. A. Atmos. Chem. Phys., 13, 12215-12231, doi:10.5194/acp-13-12215-2013, 2013.
- Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model. Stock, Z. S., Russo, M. R., and Pyle, J. A. Atmos. Chem. Phys. Discuss., 13, 27423-27458, doi:10.5194/acpd-13-27423-2013, 2013.
- Implementation of the Fast-JX Photolysis scheme (v6.4) into the UKCA component of the MetUM chemistry-climate model (v7.3). P. J. Telford, N. L. Abraham, A. T. Archibald, P. Braesicke, M. Dalvi, O. Morgenstern, F. M. O'Connor, N. A. D. Richards, and J. A. Pyle. Geosci. Model Dev., 6, 161-177, 2013.
- Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions. M. T. Woodhouse, G. W. Mann, K. S. Carslaw and O. Boucher, Atmos. Chem. Phys., 13, 2723-2733. doi: 10.5194/acp-13-2723-2013, 2013.
- Skin cancer risks avoided by the Montreal Protocol – Worldwide modelling integrating coupled climate-chemistry models with a risk model for UV Van Dijk, A., Slaper, H., den Outer, P.N., Morgenstern, O., Braesicke, P., Pyle, J.A., Garny, H., Stenke, A., Dameris, M., Kazantzidis, A., Tourpali, K. and Bais, A.F., Photochemistry and Photobiology, 89: 234–246. doi: 10.1111/j.1751-1097.2012.01223.x, 2013.
2012
- The scavenging processes controlling the seasonal cycle in Arctic sulphate and black carbon aerosol. J. Browse, K. S. Carslaw, S. R. Arnold, K. Pringle, and O. Boucher, Atmos. Chem. Phys., 12, 6775-6798, 2012.
- No statistically significant effect of a short-term decrease in the nucleation rate on atmospheric aerosols. E. M. Dunne, L. A. Lee, C. L. Reddington, and K. S. Carslaw, Atmos. Chem. Phys., 12, 11573-11587, 2012.
- Modelling future changes to the stratospheric source gas injection of biogenic bromocarbons. Hossaini, R., et al., Geophys. Res. Lett., 39, L20813, 2012.
- Mapping the uncertainty in global CCN using emulation. L. A. Lee, K. S. Carslaw, K. J. Pringle, and G. W. Mann, Atmos. Chem. Phys., 12, 9739-9751, 2012
- Intercomparison of modal and sectional aerosol microphysics representations within the same 3-D global chemical transport model. G. W. Mann, K. S. Carslaw, D. A. Ridley, D. V. Spracklen, K. J. Pringle, J. Merikanto, H. Korhonen, J. P. Schwarz, L. A. Lee, P. T. Manktelow, M. T. Woodhouse, A. Schmidt, T. J. Breider, K. M. Emmerson, C. L. Reddington, M. P. Chipperfield, and S. J. Pickering, Atmos. Chem. Phys., 12, 4449–4476, 2012.
- Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry. Pacifico, F., G. A. Folberth, C. D. Jones, S. P. Harrison, and W. J. Collins, J. Geophys. Res., 117, D22302, doi:10.1029/2012JD018276, 2012.
- A multi-model assessment of the efficacy of sea spray geoengineering. K. J. Pringle, K. S. Carslaw, T. Fan, G.W. Mann, A. Hill, P. Stier, K. Zhang, and H. Tost, Atmos. Chem. Phys. Discuss., 12, 7125-7166, 2012.
- The size distribution and mixing state of black carbon aerosol over Europe. C. L. Reddington, G. McMeeking, G. W. Mann, H. Coe, M. G. Frontoso, D. Liu, M. Flynn, D. V. Spracklen, and K. S. Carslaw, Atmos. Chem. Phys. Discuss., 12, 26503-26560, 2012.
- Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate. A. Schmidt, K. S. Carslaw, G. W. Mann, A. Rap, K. J. Pringle, D. V. Spracklen, M. Wilson, and P. M. Forster, Atmos. Chem. Phys., 12, 7321-7339, 2012.
- Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions. M. T. Woodhouse, G. W. Mann, K. S. Carslaw, and O. Boucher, Atmos. Chem. Phys. Discuss., 12, 27395-27423, 2012.
- The nature of Arctic polar vortices in chemistry–climate models. Mitchell, D.M., Charlton-Perez, A.J., Gray, L.J., Akiyoshi, H., Butchart, N., Hardiman, S.C., Morgenstern, O., Nakamura, T., Rozanov, E., Shibata, K., Smale, D. and Yamashita, Y., Q.J.R. Meteorol. Soc., 138: 1681–1691. doi: 10.1002/qj.1909, 2012.
2011
- Excess mortality in Europe following a future Laki-style Icelandic eruption. A. Schmidt, B. Ostro, K. S. Carslaw, M. Wilson, T. Thordarson, G. W. Mann and A. J. Simmons, Proceedings of the National Academy of Sciences, USA, vol. 108 ∣ no. 38, pp. 15710–15715, 2011.
- Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters. L. A. Lee, K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V. Spracklen, Atmos. Chem. Phys., 11, 12253-12273, 2011.
- Impacts of HOx regeneration and recycling in the oxidation of isoprene: Consequences for the composition of past, present and future atmospheres A. T. Archibald, J. G. Levine, N. L. Abraham, M. C. Cooke, P. M. Edwards, D. E. Heard, M. E. Jenkin, A. Karunaharan, R. C. Pike, P. S. Monks, D. E. Shallcross, P. J. Telford, L. K. Whalley, and J. A. Pyle, Geophys. Res. Lett. , 38 , L05804, doi:10.1029/2010GL046520
- Ozone concentration changes in the Asian summer monsoon anticyclone and lower stratospheric water vapour: An idealised model study: ,Braesicke, P., O. J. Smith, P. Telford, and J. A. Pyle (2011), Geophys. Res. Lett., 38, 10.1029/2010GL046228, L03810.
- Development and evaluation of an Earth-system model - HadGEM2 W. J. Collins, N. Bellouin, M. Doutriaux-Boucher, N. Gedney, P. Halloran, T. Hinton, J. Hughes, C. D. Jones, M. Joshi, S. Liddicoat, G. Martin, F. O'Connor, J. Rae, C. Senior, S. Sitch, I. Totterdell, A. Wiltshire, and S. Woodward, Geosci. Model Dev., 4, 1051-1075, 2011.
- Attribution of observed changes in stratospheric ozone and temperature Gillett, N. P., Akiyoshi, H., Bekki, S., Braesicke, P., Eyring, V., Garcia, R., Karpechko, A. Yu., McLinden, C. A., Morgenstern, O., Plummer, D. A., Pyle, J. A., Rozanov, E., Scinocca, J., and Shibata, K., (2011), Atmos. Chem. Phys., 10.5194/acp-11-599-2011 11, 599-609
- The HadGEM2-ES implementation of CMIP5 centennial simulations C. D. Jones, J. K. Hughes, N. Bellouin, S. C. Hardiman, G. S. Jones, J. Knight, S. Liddicoat, F. M. O'Connor, R. J. Andres, C. Bell, K.-O. Boo, A. Bozzo, N. Butchart, P. Cadule, K. D. Corbin, M. Doutriaux-Boucher, P. Friedlingstein, J. Gornall, L. Gray, P. R. Halloran, G. Hurtt, W. J. Ingram, J.-F. Lamarque, R. M. Law, M. Meinshausen, S. Osprey, E. J. Palin, L. Parsons Chini, T. Raddatz, M. G. Sanderson, A. A. Sellar, A. Schurer, P. Valdes, N. Wood, S. Woodward, M. Yoshioka, and M. Zerroukat, Geosci. Model Dev., 4, 543-570, 2011.
- Large methane releases lead to strong aerosol forcing and reduced cloudiness T. Kurtén, L. Zhou, R. Makkonen, J. Merikanto, P. Räisänen, M. Boy, N. Richards, A. Rap, S. Smolander, A. Sogachev, A. Guenther, G. W. Mann, K. Carslaw, and M. Kulmala (2011), Atmos. Chem. Phys. Discuss., 11, 9057-9081.
- The HadGEM2 family of Met Office Unified Model climate configurations The HadGEM2 Development Team: G. M. Martin, Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J.M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A., Geosci. Model Dev., 4, 723-757, 2011.
- Representation of tropical deep convection in atmospheric models – Part 1: Meteorology and comparison with satellite observations,Russo, M. R., Marécal, V., Hoyle, C. R., Arteta, J., Chemel, C., Chipperfield, M. P., Dessens, O., Feng, W., Hosking, J. S., Telford, P. J., Wild, O., Yang, X., and Pyle, J. A, Atmos. Chem. Phys., 11, doi:10.5194/acp-11-2765-2011, 2765-2786.
- Minor effect of physical size sorting on iron solubility of transported mineral dust Z. B. Shi, M. T. Woodhouse, K. S. Carslaw, M. D. Krom, G. W. Mann, A. R. Baker, I. Savov, G. Fones, B. Brooks, T. D. Jickells, and L. G. Benning, Atmos. Chem. Phys., 11, 8459-8469, 2011.
- Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing Z. B. Shi, M. Krom, S. Bonneville, A. R. Baker, C. Bristow, N. Drake, G. W. Mann, K. S. Carslaw, J. B. McQuaid, T. Jickells, L. G. Benning, Global Biogeochem. Cycles, doi:10.1029/2010GB003837, 2011.
- Aerosol mass spectrometer constraint on the global secondary organic aerosol budget D. V. Spracklen, J. L. Jimenez, K. S. Carslaw, D. R. Worsnop, M. J. Evans, G. W. Mann, Q. Zhang, M. R. Canagaratna, J. Allan, H. Coe, G. McFiggans, A. Rap, and P. Forster (2011), Atmos. Chem. Phys., 11, 12109-12136, 2011.
- Global cloud condensation nuclei influenced by carbonaceous combustion aerosol D. V. Spracklen, K. S. Carslaw, U. Poeschl, A. Rap, and P. M. Forster (2011), Atmos. Chem. Phys., 11, 9067-9087, 2011.
- Global multi-year O3-CO correlation patterns from models and TES satellite observations A. Voulgarakis, P. J. Telford, A. M. Aghedo, P. Braesicke, G. Faluvegi, N. L. Abraham, K. W. Bowman, J. A. Pyle, and D. T. Shindell, (2011), Atmos. Chem. Phys., 11, 5819-5838, doi:10.5194/acp-11-5819-2011
- Projections of UV radiation changes in the 21st century: Impact of ozone recovery and cloud effects Bais, A. F., K. Tourpali, A. Kazantzidis, H. Akiyoshi, S. Bekki, P. Braesicke, M. P. Chipperfield, M. Dameris, V. Eyring, H. Garny, D. Iachetti, P. Jöckel, A. Kubin, U. Langematz, E. Mancini, M. Michou, O. Morgenstern, T. Nakamura, P.A. Newman, G. Pitari, D.A. Plummer, E. Rozanov, T.G. Shepherd, K. Shibata, W. Tian, and Y. Yamashita, Atmos. Chem. Phys., 11, 15, 7533-7545, doi:10.5194/acp-11-7533-2011, 2011.
- Might dimming the sun change atmospheric ENSO teleconnections as we know them? Braesicke, P., O. Morgenstern, and J.A. Pyle, Atmos. Sci. Lett., 12, 2, 184-188, doi:10.1002/asl.294, 2011.
- Multimodel climate and variability of the stratosphere Butchart, N., A.J. Charlton-Perez, I. Cionni, S.C. Hardiman, P.H. Haynes, K. Krüger, P.J. Kushner, P.A. Newman, S.M. Osprey, J. Perlwitz, M. Sigmond, L. Wang, H. Akiyoshi, J. Austin, S. Bekki, A. Baumgaertner, P. Braesicke, C. Brühl, M. Chipperfield, M. Dameris, S. Dhomse, V. Eyring, R. Garcia, H. Garny, P. Jöckel, J.-F. Lamarque, M. Marchand, M. Michou, O. Morgenstern, T. Nakamura,S. Pawson, D. Plummer, J. Pyle, E. Rozanov, J. Scinocca, T.G. Shepherd, K. Shibata, D. Smale, H. Teyssèdre, W. Tian, D. Waugh and Y. Yamashita, J. Geophys. Res., 116, D05102, doi:10.1029/2010JD014995, 2011.
- Evaluation of radiation scheme performance within chemistry climate models, Forster, P.M., V. I. Fomichev, E. Rozanov, C. Cagnazzo, A. I. Jonsson, U. Langematz, B. Fomin, M. J. Iacono, B. Mayer, E. Mlawer, G. Myhre, R. W. Portmann, H. Akiyoshi, V. Falaleeva, N. Gillett, A. Karpechko, J. Li, P. Lemennais, O. Morgenstern, S. Oberländer, M. Sigmond and K. Shibata, J. Geophys. Res., 116, D10302, doi:10.1029/2010JD015361, 2011.
- Attribution of observed changes in stratospheric ozone and temperature Gillett, N. P., H. Akiyoshi, S. Bekki, P. Braesicke, V. Eyring, R. Garcia, A.Yu. Karpechko, C.A. McLinden, O. Morgenstern, D.A. Plummer, J.A. Pyle, E. Rozanov, J. Scinocca, and K. Shibata, Atmos. Chem. Phys., 11, 599-609, doi:10.5194/acp-11-599-2011, 2011.
- Representation of tropical deep convection in atmospheric models - Part 2: Tracer transport Hoyle, C. R., V. Marécal, M.R. Russo, G. Allen, J. Arteta, C. Chemel, M.P. Chipperfield, F. D'Amato, O. Dessens, W. Feng, J.F. Hamilton, N.R.P. Harris, J.S. Hosking, A.C. Lewis, O. Morgenstern, T. Peter, J.A. Pyle, T. Reddmann, N.A.D. Richards, P.J. Telford, W. Tian, S. Viciani, A. Volz-Thomas, O. Wild, X. Yang, and G. Zeng, Atmos. Chem. Phys., 11, 15, 8103-8131, doi:10.5194/acp-11-8103-2011, 2011.
- Using transport diagnostics to understand chemistry climate model ozone simulations, Strahan, S.E., A.R. Douglass, R.S. Stolarski, H. Akiyoshi, S. Bekki, P. Braesicke, N. Butchart, M.P. Chipperfield, D. Cugnet, S. Dhomse, S.M. Frith, A. Gettelman, S.C. Hardiman, D. E. Kinnison, J.-F. Lamarque, E. Mancini, M. Marchand, M. Michou, O. Morgenstern, T. Nakamura, D. Olivié, S. Pawson, G. Pitari, D.A. Plummer, J.A. Pyle, J.F. Scinocca, T.G. Shepherd, K. Shibata, D. Smale, H. Teyssèdre, W. Tian and Y. Yamashita, J. Geophys. Res., 116, D17302, doi: 10.1029/2010JD015360, 2011.
2010
- Chemistry-climate model simulations of spring Antarctic ozone: Austin, J., et al. (2010), Chemistry-climate model simulations of spring Antarctic ozone, J. Geophys. Res., 115, D00M11, doi:10.1029/2009JD013577.
- Decline and recovery of total column ozone using a multimodel time series analysis: Austin, J., et al. (2010), Decline and recovery of total column ozone using a multimodel time series analysis, J. Geophys. Res., 115, D00M10, doi:10.1029/2010JD013857.
- Impact of BrO on dimethylsulfide in the remote marine boundary layer Breider, T. J., M. P. Chipperfield, N. A. D. Richards, K. S. Carslaw, G. W. Mann, and D. V. Spracklen (2010), Impact of BrO on dimethylsulfide in the remote marine boundary layer, Geophys. Res. Lett., 37, L02807, doi:10.1029/2009GL040868.
- The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century: Charlton-Perez, A. J., Hawkins, E., Eyring, V., Cionni, I., Bodeker, G. E., Kinnison, D. E., Akiyoshi, H., Frith, S. M., Garcia, R., Gettelman, A., Lamarque, J. F., Nakamura, T., Pawson, S., Yamashita, Y., Bekki, S., Braesicke, P., Chipperfield, M. P., Dhomse, S., Marchand, M., Mancini, E., Morgenstern, O., Pitari, G., Plummer, D., Pyle, J. A., Rozanov, E., Scinocca, J., Shibata, K., Shepherd, T. G., Tian, W., and Waugh, D. W.: The potential to narrow uncertainty in projections of stratospheric ozone over the 21st century, Atmos. Chem. Phys., 10, 9473-9486, doi:10.5194/acp-10-9473-2010, 2010
- SPARC CCMVal (2010), SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models: V. Eyring, T. G. Shepherd, D. W. Waugh (eds.), SPARC CCMVal (2010), SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, SPARC Report No. 5, WCRP-X, WMO/TD-No. X.
- Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models Eyring, V., Cionni, I., Bodeker, G. E., Charlton-Perez, A. J., Kinnison, D. E., Scinocca, J. F., Waugh, D. W., Akiyoshi, H., Bekki, S., Chipperfield, M. P., Dameris, M., Dhomse, S., Frith, S. M., Garny, H., Gettelman, A., Kubin, A., Langematz, U., Mancini, E., Marchand, M., Nakamura, T., Oman, L. D., Pawson, S., Pitari, G., Plummer, D. A., Rozanov, E., Shepherd, T. G., Shibata, K., Tian, W., Braesicke, P., Hardiman, S. C., Lamarque, J. F., Morgenstern, O., Pyle, J. A., Smale, D., and Yamashita, Y.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010.
- Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models Gerber, E. P., et al. (2010), Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models, J. Geophys. Res., 115, D00M06, doi:10.1029/2009JD013770.
- Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics Hegglin, M. I., et al. (2010), Multimodel assessment of the upper troposphere and lower stratosphere: Extratropics, J. Geophys. Res., 115, D00M09, doi:10.1029/2010JD013884.
- Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models: Hurwitz, M. M., P. A. Newman, F. Li, L. D. Oman, O. Morgenstern, P. Braesicke, and J. A. Pyle (2010), Assessment of the breakup of the Antarctic polar vortex in two new chemistry-climate models, J. Geophys. Res., 115, D07105, doi:10.1029/2009JD012788.
- Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport Korhonen, H., Carslaw, K. S., and Romakkaniemi, S.: Enhancement of marine cloud albedo via controlled sea spray injections: a global model study of the influence of emission rates, microphysics and transport, Atmos. Chem. Phys., 10, 4133-4143, doi:10.5194/acp-10-4133-2010, 2010.
- Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds Korhonen, H., K. S. Carslaw, P. M. Forster, S. Mikkonen, N. D. Gordon, and H. Kokkola (2010), Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds, Geophys. Res. Lett., 37, L02805, doi:10.1029/2009GL041320.
- The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm Manktelow, P. T., Carslaw, K. S., Mann, G. W., and Spracklen, D. V.: The impact of dust on sulfate aerosol, CN and CCN during an East Asian dust storm, Atmos. Chem. Phys., 10, 365-382, doi:10.5194/acp-10-365-2010, 2010.
- Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model Mann, G. W., Carslaw, K. S., Spracklen, D. V., Ridley, D. A., Manktelow, P. T., Chipperfield, M. P., Pickering, S. J., and Johnson, C. E.: Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model, Geosci. Model Dev., 3, 519-551, doi:10.5194/gmd-3-519-2010, 2010.
- Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000 Merikanto, J., Spracklen, D. V., Pringle, K. J., and Carslaw, K. S.: Effects of boundary layer particle formation on cloud droplet number and changes in cloud albedo from 1850 to 2000, Atmos. Chem. Phys., 10, 695-705, doi:10.5194/acp-10-695-2010, 2010.
- Anthropogenic forcing of the Northern Annular Mode in CCMVal-2 models: Morgenstern, O., H. Akiyoshi, S. Bekki, P. Braesicke, N. Butchart, M. P. Chipperfield, D. Cugnet, M. Deushi, S. S. Dhomse, R. R. Garcia, A. Gettelman, N. P. Gillett, S. C. Hardiman, J. Jumelet, D. E. Kinnison, J.-F. Lamarque, F. Lott, M. Marchand, M. Michou, T. Nakamura, D. Olivié, T. Peter, D. Plummer, J. A. Pyle, E. Rozanov, D. Saint-Martin, J. F. Scinocca, K. Shibata, M. Sigmond, D. Smale, H. Teyssèdre, W. Tian, A. Voldoire, and Y. Yamashita (2010), J. Geophys. Res., 115, D00M03, doi:10.1029/2009JD013347.
- Review of the formulation of present-generation stratospheric chemistry-climate models and associated external forcings: O. Morgenstern, M. A. Giorgetta, K. Shibata, V. Eyring, D. W. Waugh, T. G. Shepherd, H. Akiyoshi, J. Austin, A. J. G. Baumgaertner, S. Bekki, P. Braesicke, C. Brühl, M. P. Chipperfield, D. Cugnet, M. Dameris, S. Dhomse, S. M. Frith, H. Garny, A. Gettelman, S. C. Hardiman, M. I. Hegglin, P. Jöckel, D. E. Kinnison, J.-F. Lamarque, E. Mancini, E. Manzini, M. Marchand, M. Michou, T. Nakamura, J. E. Nielsen, D. Olivié, G. Pitari, D. A. Plummer, E. Rozanov, J. F. Scinocca, D. Smale, H. Teyssèdre, M. Toohey, W. Tian, and Y. Yamashita (2010), J. Geophys. Res., 115, D00M02, doi:10.1029/2009JD013728.
- Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis Ray, E. A., et al. (2010), Evidence for changes in stratospheric transport and mixing over the past three decades based on multiple data sets and tropical leaky pipe analysis, J. Geophys. Res., 115, D21304, doi:10.1029/2010JD014206.
- The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei Schmidt, A., Carslaw, K. S., Mann, G. W., Wilson, M., Breider, T. J., Pickering, S. J., and Thordarson, T.: The impact of the 1783–1784 AD Laki eruption on global aerosol formation processes and cloud condensation nuclei, Atmos. Chem. Phys., 10, 6025-6041, doi:10.5194/acp-10-6025-2010, 2010.
- Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment Son, S.-W., et al. (2010), Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment, J. Geophys. Res., 115, D00M07, doi:10.1029/2010JD014271.
- Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo Telford, P., J. Lathiere, N. L. Abraham, P. Braesicke, C. E. Johnson, O. Morgenstern, F. M. O'Connor, R. C. Pike, O. Wild, P. J. Young, D. Beerling, C. N. Hewitt and J. A. Pyle (2010), Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo, Atmos. Chem. Phys., 10, 7117-7125, doi:10.5194/acp-10-7117-2010
- Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide Woodhouse, M. T., Carslaw, K. S., Mann, G. W., Vallina, S. M., Vogt, M., Halloran, P. R., and Boucher, O.: Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide, Atmos. Chem. Phys., 10, 7545-7559, doi:10.5194/acp-10-7545-2010, 2010.
- Impact of stratospheric ozone recovery on tropospheric ozone and the oxidizing capacity: Zeng, G., O. Morgenstern, P. Braesicke, and J. A. Pyle (2010), Geophys. Res. Lett., 37, L09805, doi:10.1029/2010GL042812.
2009
- Evaluation of the new UKCA climate-composition model – Part 1: The stratosphere: Morgenstern, O., Braesicke, P., O'Connor, F. M., Bushell, A. C., Johnson, C. E., Osprey, S. M., and Pyle, J. A., Geosci. Model Dev., 2, 43-57, 2009.
- Interactions between tropospheric chemistry and climate model temperature and humidity biases: F. M. O'Connor, C. E. Johnson, O. Morgenstern, and W. J. Collins, Geophys. Res. Lett., 36, L16801, doi:10.1029/2009GL039152, 2009.
- Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM: Telford, P., Braesicke, P., Morgenstern, O., and Pyle, J.: Reassessment of causes of ozone column variability following the eruption of Mount Pinatubo using a nudged CCM, Atmos. Chem. Phys., 9, 4251-4260, 2009.
2008
- Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study: Korhonen, H., K. S. Carslaw, D. V. Spracklen, G. W. Mann, and M. T. Woodhouse (2008), Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study, J. Geophys. Res., 113, D15204, doi:10.1029/2007JD009718.
- The World Avoided by the Montreal Protocol: Morgenstern, O., P. Braesicke, M. M. Hurwitz, F. M. O'Connor, A. C. Bushell, C. E. Johnson, and J. A. Pyle (2008), Geophys. Res. Lett., 35, L16811, doi:10.1029/2008GL034590.
- Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model: Telford, P. J., Braesicke, P., Morgenstern, O., and Pyle, J. A.: Technical Note: Description and assessment of a nudged version of the new dynamics Unified Model, Atmos. Chem. Phys., 8, 1701-1712, 2008.
- Contribution of particle formation to global cloud condensation nuclei concentrations: Spracklen, D. V., et al. (2008), Contribution of particle formation to global cloud condensation nuclei concentrations, Geophys. Res. Lett., 35, L06808, doi:10.1029/2007GL033038.
- New Directions: The impact of oceanic iron fertilisation on cloud condensation nuclei: Matthew T. Woodhouse, Graham W. Mann, Kenneth S. Carslaw, Olivier Boucher, New Directions: The impact of oceanic iron fertilisation on cloud condensation nuclei, Atmospheric Environment, Volume 42, Issue 22, July 2008, Pages 5728-5730, ISSN 1352-2310, DOI: 10.1016/j.atmosenv.2008.05.005.
2007
- Regional and global trends in sulfate aerosol since the 1980s: Manktelow, P. T., G. W. Mann, K. S. Carslaw, D. V. Spracklen, and M. P. Chipperfield (2007), Regional and global trends in sulfate aerosol since the 1980s, Geophys. Res. Lett., 34, L14803, doi:10.1029/2006GL028668.
- Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere: Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Mann, G. W., Manktelow, P., and Heintzenberg, J.: Evaluation of a global aerosol microphysics model against size-resolved particle statistics in the marine atmosphere, Atmos. Chem. Phys., 7, 2073-2090, 2007.