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* The base model: the new dynamics Unified Model
* The stratospheric UKCA (with background troposphere)

* Science examples:

* Climatological validation (Morgenstern et al., GMD(D), 2008)
* Process-oriented validation (e.g. N,O PDFs)

* UKCA constrained by the “real world” (Telford et al., ACP,
2008)

* The “world avoided” simulation (Morgenstern et al., GRL,
2008)

* Summary
* Qutlook: comprehensive whole atmosphere chemistry
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The base model

* The new dynamics Unified Model:

* Solves the 3d equations of (air) motion and does not use the
hydrostatic approximation — the vertical velocity is a
prognostic variable

* Horizontal Arakawa-C grid, hybrid geometric height coordinate

* The model uses a corrective (mass) conservative, off-
centred, semi-implicit, semi-Lagrangian transport scheme
(Priestly, 1993) — total mass conservation is guaranteed, but
“elemental” conservation not necessarily

* Here: UM6.1, N48L60

* N48: 3.75% in longitude x 2.5% in latitude (N96 possible)
* L60: surface to slightly above 80km

* For any problems not entirely constrained by surface
emissions a stratospheric model should be used. STE!

http://www.ncas.ac.uk




The stratospheric UKCA

* The stratospheric UKCA :

* Solves the chemical equations using a Newton-Raphson
solver for individual species (no family approach, hourly time
step possible)

* Controls “elemental’ conservation (idea: e.g. total chlorine is
transported, and checked against the individual species)

* Results shown here follow largely CCMVal Ref1 and Ref2
recommendations

* Sea-ice coverage and sea-surface temperatures are
prescribed from HadISST (present day) or from coupled AO
integrations with the UM (thanks to the Hadley Centre and
BADC)

http://www.ncas.ac.uk




The stratospheric UKCA

* Comprehensive stratospheric chemistry (incl. CI/Br) ...
* Lumped source gases (CFCl;, CF,Cl,, CH4Br)

* Prescribed sulphate aerosol layer
* Heterogeneous / PSC processes, denitrification

* ... background tropospheric chemistry (CH,, CO, NO,).

* Dry & wet deposition of tropospheric species
* Surface, lightning & aircraft emissions (NO, CO, CH,O)

* |ndividual species (40+, no families!)

* Halogen compounds, N,O and CH, prescribed at the surface
* Water vapour can be prescribed in tropical UTLS region

* Off-line photolysis or Fast-J2 implementation

* Ozone, etc. are used in the radiative transfer calculation

http://www.ncas.ac.uk




Science example |

Climatological validation

Zonal—-mean ozone calumn
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Fig. 9. Multiannual- and zonal-mean ozone column (Dobson Units), Colours: Strat-UKCA, with
daily resolution. Contours: TOMS/SBUV climatology, with monthly resolution.

www.geosci-model-dev-discuss.net/1/381/2008/gmdd-1-381-2008.html
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Science example 2

Process-oriented validation using N,O PDFs
. Why are they useful?

- A simple means of assessing the upwelling branch of
the BDc and the existence of a surf zone (in models
and data)

. What lessons can be learned?

- |Isolation of different latitude regimes; do we find two
distinct peaks in the distribution?

- How does the QBO affect inter-annual variability of the
upwelling BDc branch (up and down of “high value
peak” during summer)?

http://www.ncas.ac.uk



Probability

i Recent N20O PDFs
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i N20 JJA QBO Modulation
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Science example 3

UKCA constrained by the “real world”
(Telford et al., ACP, 2008)

Experimental setup to estimate ozone loss due to Pinatubo
aerosol in the 1990s:

. Two nudged UKCA runs:

- Best guess: nudged with ERA-40, observed surface aerosol
density (SAD) monthly means

- Background: nudged with ERA-40, background SAD only
. Observational data:

- Assimilated total ozone data (originator: NIWA, Greg
Bodeker)

http://www.ncas.ac.uk



Pinatubo
June 12, 1991
Three days
before major
eruption of
June 15, 1991

(hijacked from Alan
Robock’s volcano
lecture)
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Quantifying Pinatubo

“Global Ozone” (60S-60N)
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i Quantifying Pinatubo

“Tropical Ozone” (10S-10N)
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QBO proxy (can account for most of the residual).



Science example 4

The “world avoided” simulation
(Morgenstern et al., GRL, 2008)

« UKCA has been used to study a world without the
Montreal Protocol and its amendments.

A business as usual scenario would have meant
9ppbv of total chlorine before 2030.

« Two time slice runs with 3.5ppbv and 9ppbv under
“present day” boundary conditions are compared.

http://www.ncas.ac.uk




i Motivation

What would have
happened without the
Montreal Protocol and
its amendments?

Here:

We study the impact of
the avoided ozone
changes only!

(Additional GHG
Impacts are not
considered!)
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* WA global mean

Annual—zonal mean ozone difference [%] Annual mean temperature change
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Morgenstern et al., GRL, 2008



“World Avoided” on the SH
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*“World Avoided” on the NH
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i WA Summary

GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L16811, do1:10.1029/2008GL034590, 2008

Article

The World Avoided by the Montreal Protocol

Olaf Morgenstern,' Peter Braesicke,' Margaret M. Hurwitz,™ Fiona M. O’Connor,’
Andrew C. Bushell;” Colin E. Johnson,* and John A. Pyle'
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Nonetheless, we conclude that the Montreal
Protocol has provided an enormous henefit not
only to the stahility of the stratospheric ozone
layer but also to surface climate.



Clobal—annual mean ozone
SR .

i UKCA Ref2 Ozone Evolution
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i O3 recovery + climate change

Global—annual mean ozone
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Summary and outlook

* The stratospheric UKCA has a competitive performance
(model validation)

* The nudging ability is useful for relating model results to
real data (Pinatubo example)

* Assessment of coupled chemistry-climate change
problems is possible (“world avoided”)

* Forthcoming results will be contributed to CCMVal
* Whole atmosphere chemistry

* merging of UKCA troposphere and stratosphere
* straightforward, but some informed choices required

* Move to UM7.1 (straightforward, but work)
* Challenges: Resolution, Ocean

http://www.ncas.ac.uk
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Age-of-Air

Summary
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i Quantifying Pinatubo

“Global Ozone” (60S-60N) “Tropical Ozone” (10S-10N)
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Quantifying Pinatubo

Ozone lost due to chemistry on aerosols (model only).
Residual (dynamical) ozone variation (observation and model).
QBO proxy (can account for most of the residual).
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QBO during N20 observations

OQBO u[m/s] for Mlpas+MLS obs period
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i N20 JJA QBO Modulation

MIPAS N,O UKCA N,O

JJA - MIPAS at 600K - 2002-2004 JJA - UKCA at 600K - 1980-2001
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