

Improving ozone dry deposition to the ocean and lightning-produced oxides of nitrogen (NO<sub>x</sub>) in UKCA

### Ashok Luhar

CLIMATE SCIENCE CENTRE, CSIRO OCEANS AND ATMOSPHERE BUSINESS UNIT www.csiro.au



# Contributors

- Ian Galbally (CSIRO)
- Matt Woodhouse (CSIRO)
- Marcus Thatcher (CSIRO)
- Luke Abraham (Cambridge University)

# Acknowledgements

- Martin Dix (CSIRO)
- UK Met Office (Fiona O'Connor, Mohit Dalvi)
- NCI computing facility
- Various data sources as cited



### (1) Dry deposition of ozone $(O_3)$ to the ocean

- Dry deposition of ozone at the surface is a significant sink
- Current estimate of global O<sub>3</sub> dry deposition (IPCC AR5; Young et al., 2013):
  - 1094 ± 264 Tg O<sub>3</sub> yr<sup>-1</sup>, of which 300-350 Tg O<sub>3</sub> yr<sup>-1</sup> is to water
  - Deposition to water has the largest uncertainty (Hardacre et al., 2015)
- Deposition velocity is calculated as  $v_d = 1/(r_a + r_b + r_c)$ 
  - For water, surface resistance  $r_c$  is the dominant term
- Most models, including UKCA, assume  $r_c \simeq 2000 \text{ s/m}$  (Wesely, 1989)
  - Comparison of the ACCESS-UKCA (essentially UM-UKCA@vn8.4) ozone deposition velocities  $(v_d)$  with the cruise-based measurements of Helmig et al. (2012)
  - Model overestimates by a factor of 2-4 (Luhar et al., ACP, 2017)



## Improving O<sub>3</sub> dry deposition to the ocean



### Impact of the new oceanic deposition scheme

 % Overestimation of deposition velocity by the default scheme (r<sub>c</sub> = 2200 s/m) compared to the new scheme



 Increase in near-surface O<sub>3</sub>, by up to 16% in the mid to high latitudes in the Southern Hemisphere



CSIR

• Tropospheric ozone improves compared to measurements (e.g. Cape Grim, Tasmania)

| <u>Method</u>           | <u>Ocean</u> | <u>Land</u> | <u>Global total</u> |
|-------------------------|--------------|-------------|---------------------|
| Galbally and Roy (1980) | 491          | 600         | 1091                |
| Stevenson et al. (2006) | -            | -           | 1003 ± 200          |
| Wild (2007)             | -            | -           | 949 ± 222           |
| Ganzeveld et al. (2009) | 291.5        | 543.5       | 835                 |
| Hardacre et al. (2015)  | 340          | 638         | 978 ± 127           |
| IPCC AR5                | -            | -           | 1094 ± 264          |
| ACCESS-UKCA (new)       | 98.4 ± 30    | 624.4 ± 82  | 722.8 ± 87.3        |

#### • Impact of the new oceanic deposition scheme

- The ozone deposition to the ocean is reduced from ~300 to ~100 Tg  $O_3$  yr<sup>-1</sup> (by ~65% over the current estimates)
- 20% reduction in total global deposition (~1000 to ~800 Tg  $O_3$  yr<sup>-1</sup>)
- Deposition to land is similar to other studies
- Tropospheric  $O_3$  burden increases from 252 Tg to 273 Tg (correct trend compared to  $O_3$  climatologies)
- Impact on tropospheric O<sub>3</sub> radiative forcing

### • Adoption of the new scheme

- Committed to the UM trunk@vn11.4 (ticket #4020)
- In the GEOS-Chem model (Pound et al., 2020, ACP)
- In the WRF-Chem model (Barten et al., 2020, ACPD)



# (2) Lightning-produced NO<sub>x</sub>

- Lightning-produced NO<sub>x</sub> (or LNO<sub>x</sub>) is ~ 10% of the global NO<sub>x</sub> source, but its ozone production efficiency per unit NO<sub>x</sub> is an order of magnitude higher than the surface NO<sub>x</sub>
- Of all NO<sub>x</sub> sources, LNO<sub>x</sub> is the biggest contributor to tropospheric ozone in the Southern Hemisphere (Grewe, 2007)
- LNO<sub>x</sub> is a major source of ozone bias in global chemistry models large uncertainty: 2 – 8 Tg N yr<sup>-1</sup> (Schumann and Huntrieser, 2007)
- LNO<sub>x</sub> = Lightning flash rate x NO emitted per flash
- Most global chemistry models, including UKCA, use Price and Rind's (1992, PR92) parameterisations for lightning flash-rate (F) which are functions of convective cloud-top height (H)

Price and Rind (1992)

Land  $F_L = 3.44 \times 10^{-5} H^{4.9}$ Ocean  $F_O = 6.4 \times 10^{-4} H^{1.73}$ 



Oceanic flash rates smaller by 2 orders of magnitude

### **ACCESS-UKCA** performance for lightning flash rate

- UM-UKCA vn 11.0 lightning routines backported to vn 8.4; year 2006
- Comparison with LIS/OTD satellite data (Cecil et al., 2014)







#### Total observed and modelled lightning flash frequency (count s<sup>-1</sup>)

 The simple PR92 parameterisation work rather well over land, but the observed oceanic flash rate is severely underestimated (a known result)

|                    | Global | Land | Ocean | Northern<br>Hemisphere | Southern<br>Hemisphere |
|--------------------|--------|------|-------|------------------------|------------------------|
| Data - climatology | 46.2   | 38.3 | 7.9   | 27.0                   | 19.2                   |
| ACCESS-UKCA        | 32.9   | 32.5 | 0.4   | 16.2                   | 16.7                   |



### Improving the lightning flash-rate parameterisations

• Boccippio (2002) derived a fundamental scaling relationship between thunderstorm electrical generator power and storm geometry:

$$F_{L,O} = k_1 k_{L,O} H^{a_{L,O}}$$

+4

- Using intermediate steps and available data the coefficients are derived
- New relationships:  $F_{L} = 2.4 \times 10^{-5} H^{5.09}$ ,  $F_{O} = 2.0 \times 10^{-5} H^{4.38}$





|                    | Global | Land | Ocean | N. Hemisph. | S. Hemisph. |
|--------------------|--------|------|-------|-------------|-------------|
| Data – climatology | 46.2   | 38.3 | 7.9   | 27.0        | 19.2        |
| Data – year 2006   | 43.4   | 34.5 | 8.9   | 24.3        | 19.1        |
| ACCESS-UKCA        | 32.9   | 32.5 | 0.4   | 16.2        | 16.7        |
| ACCESS-UKCA (new)  | 45.0   | 36.0 | 9.0   | 23.1        | 21.9        |
|                    |        |      |       |             |             |







 Although there are some significant spatial differences, the new oceanic flash rate parameterisation in ACCESS-UKCA gives much better results



70

50

30 20

1 0.8 0.4

0.2

0.1

### Impact on tropospheric composition

- Total LNO<sub>x</sub>: 38% increase from 4.8 to 6.6 Tg N/yr (cf. 6.3 ± 1.4 Tg N/yr, Miyazaki et al., 2014, based on satellite data assimilation in a global CTM); 330 moles NO per flash used in both (cf. 310 by Miyazaki et al.)
- NO<sub>x</sub> (pptv, as NO<sub>2</sub>)

Global increase by 15.7% (8.7 pptv)

An increase by as much as 40 pptv in the mid to upper troposphere

• Ozone (ppbv)

A global  $O_3$  increase by 8% (4.1)

Surface  $O_3$  increases by 2 ppbv in the Southern Hemisphere, and 0.5–2 ppb in the Northern Hemisphere.

Tropospheric  $O_3$  burden increases from 284 to 308 Tg (cf. 337 Tg, IPCC AR5)



CSIR

#### • Other species

- Hydroxyl (OH) radical increases by 13% globally (16.3% over the ocean and 7.6% over land)
- Methane lifetime decreases by 6.7%
- Carbon monoxide (CO) decreases by 5.6% globally (6.2% over the ocean and 4.5% over land)
- Larger impact over the southern hemisphere
- Implications for radiative forcing
- Paper in ACPD (Luhar et al., 2020, <a href="https://acp.copernicus.org/preprints/acp-2020-885/">https://acp.copernicus.org/preprints/acp-2020-885/</a>)
- The new lightning scheme has been committed to the UM trunk@vn11.8 (ticket # 5713)

