

Cloud water pH and Sulphate aerosols

Steven Turnock

(steven.turnock@metoffice.gov.uk)

UKESM/UKCA Science advances Workshop

26/03/2021

www.metoffice.gov.uk

Met Office Why is it important?

- Sulphate aerosol is primarily formed from the oxidation of SO₂ in the atmosphere (S(IV) to S(VI)) from anthropogenic and natural (e.g. Volcanoes, DMS) sources
- Oxidation can occur in the **gas phase** via reaction with OH

Overall $SO_2 + OH + M \rightarrow H_2SO_4 + M$ H_2SO_4 vapour can lead to particle formation

SO₂ also dissolves in water and oxidation can also occur in the aqueous phase via reaction with H₂O₂ and O₃

$$H_2O_2$$
 $HSO_3^- + H_2O_2 + H^+ \rightarrow 2H^+ + SO_4^{2-} + H_2O$ pH independent

O₃ $HSO_3^- + O_3(aq) \to SO_4^-(+H^+ + O_2)$ Re

 O_3 $SO_3^{2-} + O_3(aq) \to SO_4^{2-}(+O_2)$ se

Reactions with O₃ are highly sensitive to pH

Globally, Gas-phase accounts for **15-35%** of tropospheric sulphate formation whereas **aqueous phase 60-80%** so an important pathway to consider

The problem is UKCA uses a fixed global value for cloud water <u>pH of 5</u>

• pH also important in calculating the amount of SO₂ dissolved for reactions and wet deposition

Seinfeld and Pandis, 2006

Reproduced from Rodhe et al., 2002 – Global distribution of pH in rainwater from model

Met Office Previous Results

Surface SO4 bias affected by pH

Recent Aerosol Radiative Forcing affected by pH

Turnock et al., (2019) GRL – The Impact of Cloud Water pH on Aerosol Radiative Forcing (10.1029/2019GL082067)

Met Office Initial development

 A new development branch implemented previous approach that was in GLOMAP to change pH based on SO₂ concentrations (representative of polluted and non-polluted conditions)
so₂ control
so₂ Interactive - Control

if [SO2(lat,lon)] < 0.05 ppb then pH = 6.0

if [SO2(lat,lon)] > 0.05 ppb and < 0.1 ppb then pH = 5.5

if [SO2(lat,lon)] > 0.1 ppb and < 0.5 ppb then pH = 5.0

if [SO2(lat,lon)] > 0.5 ppb and < 1.0 ppb then pH = 4.5

if [SO2(lat,lon)] > 1.0 ppb then pH = 4.0

Initial results encouraging but need more testing/development

- Look into development branch further:
 - potential of impact of changes in pH on SO_2 and SO_4
 - are appropriate values are being used to set cloud water pH based on SO₂
- Look into developing a more sophisticated approach to calculating acidity/pH based on acid-base balance of SO₂, CO₂, NH₃ concentrations to improve spatial and temporal representation of pH

Additional Slides

Met Office Why is it important?

- Sulphate aerosol is primarily formed from the oxidation of SO₂ in the atmosphere (S(IV) to S(VI)) from anthropogenic and natural (e.g. Volcanoes, DMS) sources
- Oxidation can occur in the **gas phase** via reaction with OH

 $SO_2 + OH + M \rightarrow HOSO_2 \cdot +M$ $HOSO_2 \cdot +M \rightarrow HO_2 \cdot +SO_3$

 $SO_3 + H_2O + M \rightarrow H_2SO_4 + M H_2SO_4$ vapour can lead to particle formation

- SO_2 also dissolves in water and oxidation can also occur in the aqueous phase via reaction with H_2O_2 and O_3

 H_2O_2 $HSO_3^- + H_2O_2 + H^+ \rightarrow 2H^+ + SO_4^{2-} + H_2O$ pH independent O_3 $HSO_3^- + O_3(aq) \rightarrow SO_4^-(+H^+ + O_2)$ Reactions with O_3 are highly O_3 $SO_3^{2-} + O_3(aq) \rightarrow SO_4^{2-}(+O_2)$ Reactions with O_3 are highly

Globally, Gas-phase accounts for **15-35%** of tropospheric sulphate formation whereas aqueous phase **60-80%** so an important pathway to consider

Met Office Hadley Centre How does UKCA treat Aqueous Phase Chemistry?

- Uses equilibrium Henry's law approach to calculate dissolution of SO₂ to cloud droplets
- To calculate the rate of sulphate production uses:
 - Uses cloud fraction
 - Cloud liquid water content of 0.0002 kgm⁻³, typical of stratocumulus cloud)
 - Fixed cloud water pH of 5
- Produced sulphate mass is partitioned into soluble accumulation and coarse modes
- pH also important in calculating the amount of SO₂ dissolved for wet deposition