

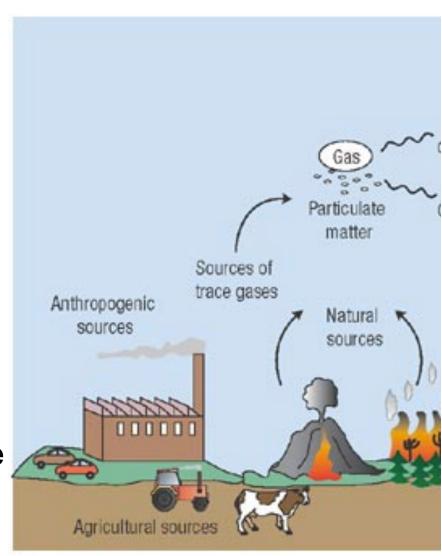
Emissions in UKCA: What goes in must... do something?!

Introduction to UKCA, 4-8 Jan 2016, Cambridge

Carlos Ordóñez carlos.ordonez@metoffice.gov.uk Alex Archibald ata27@cam.ac.uk

Garbage in garbage out!

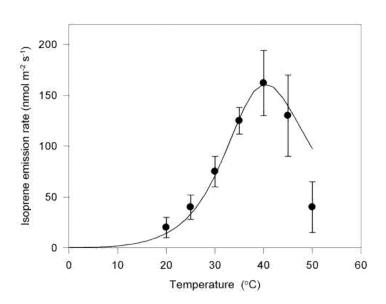
- It's as simple as that really. Numerical models take inputs, operate on these and produce outputs.
- If you want high quality, meaningful outputs then you need to think about BOTH what your model is doing and what you are putting into your model.

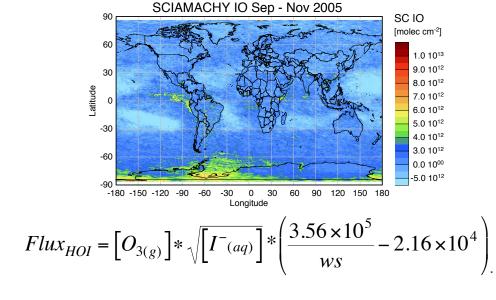


Sources of emissions:

- There are mainly two sources of emissions:
 - Natural

Anthropogenic


 We can also divide emissions by their phase (gas vs aerosol).



Natural emissions

- Produced through natural processes e.g. photosynthesis, respiration, wild fires etc. So often have a dependence on environmental factors
- Some of the most interesting "new" research topics deal with the feedbacks between climate and natural emissions.

Anthropogenic emissions

- Produced by man-made processes e.g. pasture burning, agriculture, industry etc. Can have "environmental dependence" but generally not.
- For some compounds anthropogenic emissions are the dominate source.

Predicted to change due to socio-economic factors.

Treatment of emissions in UKCA

- 1. Introduction
- 2. Ancillary emission system
- 3. NetCDF emission system
- 4. Final notes on UKCA
- 5. Getting hold of emissions data

Emission inputs to UKCA

- Offline: Pre-computed fluxes
 - Read in from ancillary or NetCDF files
 - 12-monthly varying 2-D or 3-D fields

- Online: Computed in real-time using fields from the UM. Examples:
 - Lightning NO_x
 - Sea-salt (in GLOMAP-mode)
 - Wetland CH₄ (from JULES)
 - Interactive BVOC (from JULES; for isoprene, terpenes, methanol, acetone; since UM vn9.2).

Gas phase emissions

Emission Species	Units	Std	Trop-	RAQ	Strat	Strat+
		Trop	Isop	Chem	Chem	Trop
NOx Surface Emissions	$kg(NO2)/m^2/s$	Y	Y	Y	Y	Y
CH4 Surface Emissions	$kg(CH4)/m^2/s$	Y	Y	Y	Y	Y
CO Surface Emissions	$kg/m^2/s$	Y	Y	Y	Y	Y
HCHO Surface Emissions	$kg/m^2/s$	Y	Y	Y	Y	Y
C2H6 Surface Emissions	$kg/m^2/s$	Y	Y	Y		Y
C3H8 Surface Emissions	$kg/m^2/s$	Y	Y	Y		Y
CH3COCH3 Surface Emissions	$kg/m^2/s$	Y	Y	Y		Y
CH3CHO Surface Emissions	$kg/m^2/s$	Y	Y	Y		Y
C5H8 (Isop) Surface Emiss	$kg(C)/m^2/s$		Y	Y		Y
H2 Surface Emissions	$\mathrm{kg}/\mathrm{m}^2/\mathrm{s}$			Y		
C4H10 Surface Emissions	$kg/m^2/s$			Y		
C2H4 Surface Emissions	$kg/m^2/s$			Y		
C3H6 Surface Emissions	$kg/m^2/s$			Y		
Toluene Surface Emissions	$kg/m^2/s$			Y		
o-xylene Surface Emissions	$kg/m^2/s$			Y		
CH3OH Surface Emissions	$kg(C)/m^2/s$			Y		
NOx Aircraft Emissions (3D)	$kg(NO2)/m^2/s$	Y	Y	Y	Y	Y

Aerosol & online emissions

Emission Species	Units	Std	Trop-	RAQ	Strat	Strat+
		Trop	Isop	Chem	Chem	Trop
If using Aerosol Chem						
Monoterpene Surface Emiss	$kg(C)/m^2/s$	Y	Y			Y
NVOC Surface Emiss	$kg(C)/m^2/s$		Y			Y
SO2 Surface Emissions	$kg(S)/m^2/s$	Y	Y		Y	Y
DMS Surf Emiss (Land, ocean)	$kg(S)/m^2/s$	Y	Y		Y	Y
NH3 Surface Emissions	$kg/m^2/s$	Y	Y			Y
SO2 High (Ind,forest,ship)	$kg(S)/m^2/s$	Y	Y		Y	Y
SO2 Volcanic Emissions (3D)	$kg(S)/m^2/s$	Y	Y		Y	Y
for GLOMAP-mode (if using 5-mode setup)						
BC Fossil Fuel Emiss	$kg(C)/m^2/s$	Y	Y			Y
OC Fossil Fuel Emiss	$kg(C)/m^2/s$	Y	Y			Y
BC Biofuel Emissions	$kg(C)/m^2/s$	Y	Y			Y
OC Biofuel Emissions	$kg(C)/m^2/s$	Y	Y			Y
BC Biomass burn Emiss (3D)	$kg(C)/m^2/s$	Y	Y			Y
OC Biomass burn Emiss (3D)	$kg(C)/m^2/s$	Y	Y			Y
Online Emissions						
CH4 Wetland Emiss (in LSH - Optional)	$kg(C)/m^2/s$	Y	Y	Y	Y	Y
Lightning NOx (in UKCA)	kg(NO2)/kg(air)/cell/s	Y	Y	Y	Y	Y
Sea-Salt Emiss (in GLOMAP-mode)	$number/m^2/s$	Y	Y		Y	Y

2. Ancillary emission system

Emission files & STASH

UKCA Makes use of user ancillary files:

- single-level: items 301-320 (STASH section 0)
- multi-level: items 321-340 (STASH section 0)

STASH	Emission Species		Units	Std	Trop-	RAQ	Strat	Strat+
code				Trop	Isop	Chem	Chem	Trop
301	NOx Surface Emissions		$kg(NO2)/m^2/s$	Y	Y	Y	Y	Y
302	CH4 Surface Emissions		$kg(CH4)/m^2/s$	Y	Y	Y	Y	Y
303	CO Surface Emissions		$\mathrm{kg}/m^2/\mathrm{s}$	Y	Y	Y	Y	Y
304	HCHO Surface Emissions		$kg/m^2/s$	Y	Y	Y	Y	Y
305	C2H6 Surface Emissions		$kg/m^2/s$	Y	Y	Y		Y
306	C3H8 Surface Emissions		$kg/m^2/s$	Y	Y	Y		Y
307	CH3COCH3 Surface Emissions CH3CHO Surface Emissions		$kg/m^2/s$	Y	Y	Y		Y
308			$kg/m^2/s$	Y	Y	Y		Y
309	C5H8 (Isop) Surface Emiss		$kg(C)/m^2/s$		Y	Y		Y
			_	ı I	1	I I	! 	! ! ! !
340	NOx Aircraft Emissions (3D)		$kg(NO2)/m^2/s$	Y	Y	Y	Y	Y

Rest of items in section 0 reserved for UM prognostics

Need to add STASH items

```
#
           301 | NOx surf emissions
11
21
                                       0 |
 4 |
                                       -99 I
            0 | 129 |
5|
       531 |
                              0 |
                                       0 |
#
#
11
           340 | NOX AIRCRAFT EMS IN KG/S/GRIDCELL
21
                              11 |
                 1 |
 4 |
                                       -99 I
51
      520 |
            20 | 65 |
#
```

Meaning:

- Item 301: Single level data (surface level)
- Item 340: Data on atmosphere theta levels (from first to last tracer level)

Array with list of emitted species/fields
 Scheme specific. Declared in ukca_d1_defs.F90:
 CHARACTER (LEN=10), DIMENSION(:), ALLOCATABLE, SAVE :: em chem spec

Allocated & filled in ukca_setd1defs.F90

(IF block for different chemistry schemes)

NO_x emissions: Expressed as kg(NO₂) m⁻² s⁻¹ but assigned to the NO tracer!

Array "em_chem_spec" (2)

If adding new emission field:

- Look for your chemistry scheme in the IF block of UKCA_SETD1DEFS. Update em_chem_spec.
- Need new STASH code?
- Need to update long block towards the end of UKCA_SETD1DEFS?

(See tutorial in the afternoon)

Code in UKCA_MAIN

(ukca_main1-ukca_main1.F90)

```
IF ( L_ukca_new_emiss ) THEN

CALL ukca_new_emiss_ctl ( ... )

ELSE

CALL UKCA_EMISSION_CTL ( ... )

END IF
```

Both cases accept online emissions

Beginning of the routine → Some initialisations & IF blocks affecting different UKCA configurations/options. Examples:

Then very **long loop through all gas phase tracers** to (i) **add surface emissions**, including unit conversions if needed, and (ii) do **boundary layer mixing of tracers**. See next slide ...

! Check if tracer has **surface emissions** and set emission. Otherwise emission field is zero from initialisation.

```
DO k = 1, jpctr ! loop over tracers
DO I = 1, n_chem_emissions
```

```
! Rest of emissions
ELSE IF (advt(k) == em_chem_spec(l) ) THEN
    em_field(:,:,k) = all_emissions(:,:,l)
ENDIF ! end advt(k)
END DO ! I=1,n_use_emissions
```


! Check if tracer has **surface emissions** and set emission. Otherwise emission field is zero from initialisation.

```
DO k = 1, jpctr ! loop over tracers

DO I = 1, n_chem_emissions

IF (advt(k) == em_chem_spec(I) .AND. em_chem_spec(I) == 'NO ') THEN
! Convert from kg NO2/m2/s to kg NO/m2/s

em_field (:,:,k) = all_emissions (:,:,I) * m_no / m_no2
```

```
! Rest of emissions
ELSE IF (advt(k) == em_chem_spec(l) ) THEN
em_field(:,:,k) = all_emissions(:,:,l)
ENDIF ! end advt(k)
END DO ! I=1,n_use_emissions
```


! Check if tracer has surface emissions and set emission. Otherwise emission field is zero from initialisation. DO k = 1, jpctr ! loop over tracers DO I = 1, n chem emissions IF (advt(k) == em_chem_spec(l) .AND. em_chem_spec(l) == 'NO ') THEN Convert from kg NO2/m2/s to kg NO/m2/s em_field (:,:,k) = all_emissions (:,:,l) * m_no / m_no2 ELSE IF ... ! Many other checks (for SO2_low, DMS, Monoterp, C5H8, MeOH, Me2CO, ...). ! Note that BVOC emissions might be interactive If you update the code check if there are specific unit conversions for your species and make sure that is consistent with your emission fields. Rest of emissions ELSE IF (advt(k) == em_chem_spec(l)) THEN em_field(:,:,k) = all_emissions(:,:,l) ! end advt(k) **ENDIF** END DO ! I=1,n_use_emissions

! Check if tracer has surface emissions and set emission. Otherwise emission field is zero from initialisation. DO k = 1, jpctr ! loop over tracers DO I = 1, n chem emissions IF (advt(k) == em_chem_spec(l) .AND. em_chem_spec(l) == 'NO ') THEN Convert from kg NO2/m2/s to kg NO/m2/s em_field (:,:,k) = all_emissions (:,:,l) * m_no / m_no2 ELSE IF ... ! Many other checks (for SO2_low, DMS, Monoterp, C5H8, MeOH, Me2CO, ...). ! Note that BVOC emissions might be interactive If you update the code check if there are specific unit conversions for your species and make sure that is consistent with your emission fields. Rest of emissions ELSE IF (advt(k) == em_chem_spec(l)) THEN em_field(:,:,k) = all_emissions(:,:,l) ! end advt(k) **ENDIF** END DO ! I=1,n_use_emissions IF (advt(k) == 'CH4 ' ...) THEN Add wetland CH4 emissions or prescribe the surface mixing ratio IF (L_ukca_strat .OR. L_ukca_stratcfc .OR. L_ukca_strattrop) THEN Treatment of long-lived species with lower boundary condition


```
! Check if tracer has surface emissions and set emission. Otherwise emission field is zero from
     initialisation.
DO k = 1, jpctr
                      ! loop over tracers
   DO I = 1, n chem emissions
      IF (advt(k) == em_chem_spec(l) .AND. em_chem_spec(l) == 'NO
                                                                           ') THEN
       Convert from kg NO2/m2/s to kg NO/m2/s
        em_field (:,:,k) = all_emissions (:,:,l) * m_no / m_no2
                     ! Many other checks (for SO2_low, DMS, Monoterp, C5H8, MeOH, Me2CO, ...).
      ELSE IF ...
!
                       Note that BVOC emissions might be interactive
      If you update the code check if there are specific unit conversions for your
      species and make sure that is consistent with your emission fields.
      Rest of emissions
      ELSE IF (advt(k) == em_chem_spec(l) ) THEN
        em_field(:,:,k) = all_emissions(:,:,l)
                    ! end advt(k)
      ENDIF
               ! I=1,n_use_emissions
   END DO
   IF (advt(k) == 'CH4 ' ... ) THEN
     Add wetland CH4 emissions or prescribe the surface mixing ratio
   IF (L_ukca_strat .OR. L_ukca_stratcfc .OR. L_ukca_strattrop) THEN
      Treatment of long-lived species with lower boundary condition
! Call boundary layer mixing and add surface emissions.
      CALL TR_MIX ( ..., em_field (:, :, k), ..., tracers (:, :, 1:bl_levels, k), ....)
             ! end of loop over tracers
END DO
```


Similar stuff for GLOMAP-mode

- Initial emission arrays for aerosols are created from the input data (depending on the model set-up)
- CALL ukca_mode_ems: returns mass & number emission arrays for sulphate, sea-salt, OC, BC and dust (as required)
- The number and mass fluxes are then assembled for each tracer in the array em_field_mode
- 4. **Diagnostics** for emitted component mass are stored in STASH

```
| 38 | 201 | PRIMARY SO4 TO AITKEN (SOL)

| 38 | 202 | PRIMARY SO4 TO ACCUMULATION (SOL)

| 38 | 203 | PRIMARY SO4 TO COARSE (SOL)

| 38 | 204 | PRIMARY SEA-SALT TO ACCUMULTN (SOL)

| 38 | 205 | PRIMARY SEA-SALT TO COARSE (SOL)

| 38 | 206 | PRIMARY BLACK CARBON TO AITKEN (SOL)

| 38 | 207 | PRIMARY BLACK CARBON TO AITKEN (INS)

| 38 | 208 | PRIMARY ORG. CARBON TO AITKEN (SOL)

| 38 | 209 | PRIMARY ORG. CARBON TO AITKEN (INS)

| 38 | 210 | PRIMARY DUST TO ACCUMULATION (SOL)

| 38 | 211 | PRIMARY DUST TO ACCUMULATION (INS)

| 38 | 212 | PRIMARY DUST TO COARSE (SOLUBLE)
```


Similar stuff for GLOMAP-mode

```
! Beginning of ukca_emission_ctl. Call routine for primary emissions for UKCA-MODE

IF (L_ukca_mode) THEN

CALL ukca_mode_ems_um → em_field_mode is filled with nr & mass

END IF emission fluxes for each tracer

! After doing injection & mixing of gas tracers. Do same for MODE aerosols

IF (L_ukca_mode) THEN

! Call boundary layer mixing and add surface emissions
! for GLOMAP-mode aerosol tracers

DO kaer = 1,n_mode_tracers ! loop over tracers

CALL TR_MIX (..., em_field_mode (:, :, 1, kaer), ..., mode tracers (:, :, 1:bl levels, kaer), ...)
```


Similar stuff for GLOMAP-mode

```
! Beginning of ukca emission ctl. Call routine for primary emissions for UKCA-MODE
       IF (L ukca mode) THEN
           CALL ukca mode ems um -> em field mode is filled with nr & mass
                                       emission fluxes for each tracer
       END IF
! After doing injection & mixing of gas tracers. Do same for MODE aerosols
       IF (L ukca mode) THEN
          ! Call boundary layer mixing and add surface emissions
          ! for GLOMAP-mode aerosol tracers
         DO kaer = 1, n mode tracers ! loop over tracers
            CALL TR MIX (\ldots, \text{ em field mode } (:, :, 1, kaer), \ldots,
                              mode tracers (:, :, 1:bl levels, kaer), ...)
           ! Add in emission fluxes not at surface level
           DO k = 2, model levels
              CALL TRSRCE (..., mode tracers (:, :, k, kaer), ...,
                                     em field mode(:, :, k, kaer), ...)
           END DO ! loop over model levels 2 to top (k)
         END DO
                                       ! end of loop over tracers (kaer)
       END IF ! if L UKCA MODE
```

Met Office

ukca_emission_ctl.F90 (4)

! Diagnose NO2 lightning emissions

```
lightningem_n_gridbox = 0.0
lightningem_no2_to_air = 0.0

CALL UKCA_LIGHT_CTL( ... &
    lightningem_n_gridbox (1:row_length,1:rows,1:model_levels), &
    lightningem_no2_to_air (1:row_length,1:rows,1:model_levels))
```

! Convert aircraft emissions from kg NO2/gridbox/s to kg NO/m2/s

```
Within some loops:
```

END DO

```
conv_aircraftems(j,k,l) = aircraftems(j,k,l)
  * m_no/(surf_area(j,k)*m_no2)
```

! Add aircraft emissions to NO or NOx tracer

! Update tracer fields with NO/NOx lightning emissions

```
tracers(1:row_length,1:rows,:,inox) =
    tracers(1:row_length,1:rows,:,inox) +
    timestep*lightningem no2 to air*m no/m no2
```

Finally, treatment of SO₂ emissions (if aerosol chemistry):

- Add (3-D volcanic + high-level anthropogenic) emissions to SO₂ tracer.
 NOTE: The code removes direct sulphate fraction of emissions and converts from kg(S) to kg (SO₂)
- Add 3-D emissions from explosive volcanic eruptions (e.g. Pinatubo 1991 and 5 others):

Last note (only for ASAD framework). Some calls to output emission diagnostics:

```
CALL asad_emissions_diagnostics
CALL asad_3D_emissions_diagnostics
```


Advantages and limitations of the Met Office ancillary emission system

Advantages

Well tested for all UKCA configurations:

- Works with all chemistry schemes & with GLOMAP-mode
- UKCA EMISSION CTL accepts all online emissions available in UKCA

Limitations

Cannot easily treat emissions from independent source sectors separately. Example:

```
em chem spec =
                                             æ
  (/'NO ',....
   'SO2_low ', 'SO2_high ', 'SO2_nat ',
   ..., 'NO aircrft'/)
```

Units in emission fields need to be as indicated in UKCA EMISSION CTL. However the UKCA code cannot check whether that is the case in your ancillary emission file!

3. NetCDF emission system

Available since UM vn8.6

Advantages

- Allow the use of different emission fields to account for independent source sectors for any given tracer
- Emissions can be injected at different altitudes and with different temporal variability
- Avoid inconsistencies in the units of the emission fields (to comply with CF conventions units should be "kg m⁻² s⁻¹")

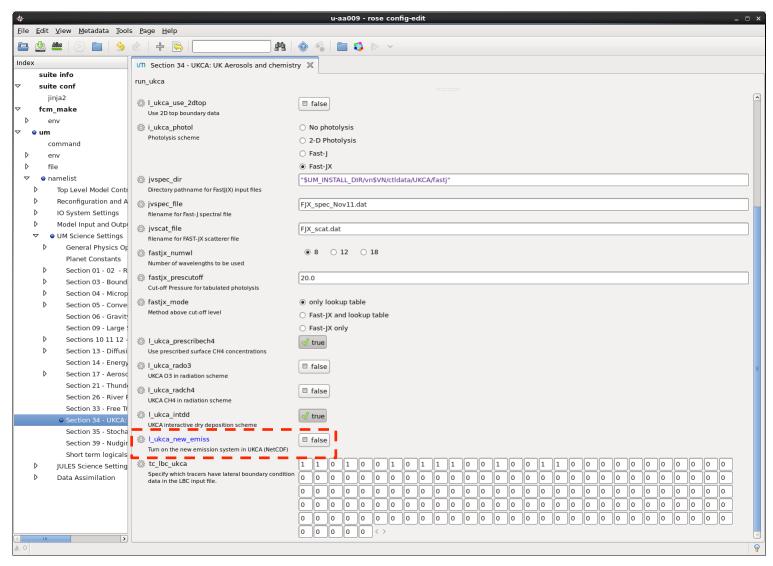
Limitations

- Currently tested only for RAQ & Strat-Trop chemistry
- Needs to be extended for:
 - aerosol emissions (l_ukca_mode .OR. l_ukca_aerchem .OR. l_ukca_nr_aqchem)
 - iBVOC emissions (L_ukca_ibvoc .AND. L_bvoc_emis)

UKCA code for NetCDF emissions

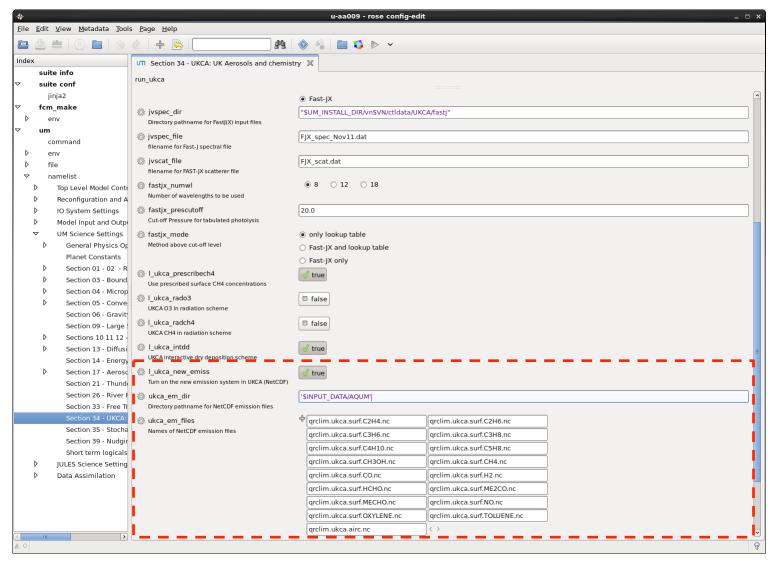
- As before "em_chem_spec" is allocated & filled within ukca_setd1defs.F90
 Each element of the array could correspond to 1 or more emission fields
- From ukca_main1-ukca_main1.F90:

- ukca_new_emiss_ctl.F90 includes calls to many routines in order to:
 - Go through NetCDF emission files to automatically identify emission fields present in them
 - Initialise an "emissions" structure which will hold all emission fields
 - Update the "emissions" structure when needed
 - Output emission diagnostics


NAMELIST input through UMUI (only available at UM vn8.6)

Section 34:	: UKCA Chemistry :	and Aerosols	: Job dlna.f: "c	p ansyq (AQ	UM std job from	UMSys)"	×
Choose the relevant section re	elease < <0A> UKC	CA not included CA included.					
•	Age of air only Standard Troposphe	ric(BE)					
Select Chemical Scheme	RAQ(BE) Tropospheric+Isopre Standard Stratosphe						
	Stratospheric + Tropo		istry				
Set Backward Euler Solver Backward Euler Times		ault values?					
Number of iterations fo	or BE solver 8						
☐ Include aerosol chemistry							
☐ UKCA_MODE Aerosol Sch							
☐ Interactive wetland CH4 en	nissions						
Specify Tropospheric Options Use 2D top boundary data Directory pathname for the 2D Switch on Tropospheric He	? I top boundary data: [
Select Stratospheric options to	be included:						
☐ Switch on water feedback f	from chemistry						
☐ Switch on Heterogenous /	PSC chemistry						
☐ Use climatological Aerosol	for Surface Area						
Directory containing cli		ile:			?/vn\$VN/ctldata/UK(
File containing climatol	- C				SAD_SPARC_1950	0-2100.asc	
☐ Use a cyclic, month		nd' aerosol field	I instead of times	eries			
Push PHOTO button for photo	•	D	0				
Push LOWBC button to specify Push COUPL button for Coupl	-	-					
Push UKCA TRA to initialise t	_	na Aunosphere					
Push MODE to setup aerosol							
Push NEW_EMISS to set up t		sion system					
Help Abandon char	nges Close	РНОТО	LOWBC	COUPL	UKCA_TRA	MODE	NEW_EMISS
	Minda	w Nama : atma	s Science Sect	on LIKCA	ob dina.f.		

🎳 UKCA NetCDF Emission System : Job dlna.f: "cp ansyq (AQU 💄 🗆 🗴								
✓ Use new UKCA emissions								
Director	y pathna	me for NetCDF emission files						
		NetCDF emission file						
Number	File nam	***************************************	es	Include Y/N	•			
31	i ile ilali			Iliciade I/IV	Δ			
32					П			
33					ш			
34					ш			
35					ш			
36					ш			
37					ш			
38					Ш			
39					Ш			
40					Ш			
Inert		Edit	7					
	Inert Edit Edit Remove Blank Lines							
Push Uk	Push UKCA to go to the parent window							
He	elp	Abandon changes	Close	UKCA				
W	/indow N	lame : atmos_Science_Section_	_UKCA_Emiss.	Job dlna.f.				



NAMELIST input through Rose (I)

NAMELIST input through Rose (II)

Requirements of NetCDF files (1)

Maximum nr of emission files: 40

ukca_option_mod.F90:

```
INTEGER, PARAMETER :: nr_cdf_files = 40
CHARACTER (LEN=120) :: ukca_em_dir
CHARACTER(LEN=50) :: ukca_em_files(nr_cdf_files)
```

Each NetCDF file may include one or several emission fields

- Should comply with:
 - CF conventions (http://cfconventions.org/)
 - Met Office NetCDF conventions

However UM code could still work if files don't comply.

Next slides: Metadata attributes needed in the files so that the UM code works!

Requirements of NetCDF files (2)

Global attributes needed in each emission file:

 update_freq_in_hours: frequency in hours at which all emission fields present in that file should be read.

If you want 5 days (as done for ancillaries in many UMUI jobs):

```
update_freq_in_hours = 120
```

- emission type (follows same conventions as for ancillary files):
 - 0: Single time (not allowed yet)
 - 1: Time series
 - 2: Periodic time series

Requirements of NetCDF files (3)

Some **metadata attributes** required for **each emission field**:

- name: Name of the emission field (80 characters, only for debugging)
- **tracer_name:** This has to be equal to one of the names in the list of emissions for the given chemical scheme, i.e. **em_chem_spec**
- **standard_name**: Compulsory if available. Example for NO:

```
"tendency_of_atmosphere_mass_content_of_nitrogen_monoxide_due_to_emission"

See http://cfconventions.org/Data/cf-standard-names/26/build/cf-standard-name-table.html
```

• **long_name**: Compulsory if there is no 'standard_name' available. Example:

```
"tendency of atmosphere mass content of nitrogen monoxide due to emission"
```

- **units** = "kg m-2 s-1"
- hourly_scaling, daily_scaling & vertical_scaling: Characters read by the UM to apply corresponding numeric scaling factors

What UKCA code does with NetCDF attributes

Met Office

```
! Emission Data structure
```

TYPE ukca_em_struct

CHARACTER (LEN=256) :: file_name
CHARACTER (LEN=80) :: var_name
CHARACTER (LEN=10) :: tracer_name
CHARACTER (LEN=256) :: std_name
CHARACTER (LEN=256) :: lng_name
CHARACTER (LEN=30) :: units

INTEGER :: update_freq
INTEGER :: update_type
LOGICAL :: l_update
LOGICAL :: three_dim
REAL :: base_fact

REAL, POINTER :: vert_scaling_3d (:,:,:)

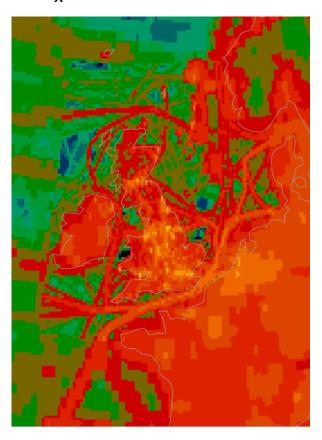
CHARACTER (LEN=20) :: hourly_fact
CHARACTER (LEN=20) :: daily_fact
CHARACTER (LEN=30) :: vert_fact
INTEGER :: lowest_lev
INTEGER :: highest_lev
REAL, POINTER :: values (:,:,:)
REAL, POINTER :: diags (:,:,:)

END TYPE ukca_em_struct

! Super array of emissions
TYPE (ukca_em_struct), ALLOCATABLE :: emissions (:)

1. The UKCA code creates an "emissions" structure (derived type variable) which contains objects representing emissions. Each object can be distinguished by some components: emission name, values, units, vertical/temporal profiles, ...

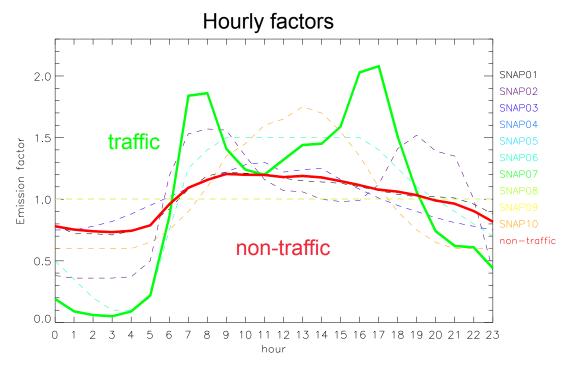
2. Then some of the NetCDF attributes are assigned to those components


Attribute in NetCDF files	Corresponding name in emissions structure
	within the UKCA code
name	emissions(:)%var_name
standard_name	emissions(:)%std_name
long_name	emissions(:)%lng_name
tracer_name	emissions(:)%tracer_name
units	emissions(:)%units
hourly_scaling	emissions(:)%hourly_fact
daily_scaling	emissions(:)%daily_fact
vertical_scaling	emissions(:)%vert_fact
lowest_level	emissions(:)%lowest_lev
highest_level	emissions(:)%highest_lev
update_freq_in_hours (global)	emissions(:)%update_freq
emission_type (global)	emissions(:)%update_type

ALLOCATE (emissions(num_em_flds))

Example of time / vertical profiles for RAQ (1)

Typical 12-monthly emission field for NO_x (all source sectors combined)


Better approach: Use separate SNAP source sectors

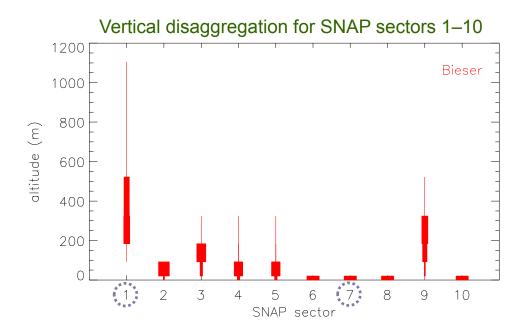
- 1 Combustion in energy and transformation industries
- 2 Non-industrial combustion plants
- 3 Combustion in manufacturing industry
- 4 Production processes
- 5 Extraction and distribution of fossil fuels
- 6 Solvents
- 7 Road transport ("traffic")
- 8 Other mobile sources (e.g. shipping)
- 9 Waste treatment and disposal
- 10 Agriculture
- 11 Natural and biogenic sources

Example of time / vertical profiles for RAQ (1a)

- Hourly & daily factors to account for daily and weekly variability in emissions
- Based on data provided by TNO for the MACC project

Example of time / vertical profiles for RAQ (1b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23


Module UKCA_EMISS_FACTORS - Subroutine HOURLY_EMISS_FACTORS

```
SELECT CASE (TRIM (hourly fact)) ← NetCDF attribute hourly scaling
    ! No hourly factors applied unless specified
    CASE ('none', '')
     hourly scaling =
         (/1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,
          1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00,
          1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00/)
    ! Hourly factors of emissions for Europe. Calculated by TNO
    ! for the MACC project.
    CASE ('TNO MACC EU SNAP07')
      hourly scaling =
         (/0.19, 0.09, 0.06, 0.05, 0.09, 0.22, 0.86, 1.84,
          1.86, 1.41, 1.24, 1.20, 1.32, 1.44, 1.45, 1.59,
           2.03, 2.08, 1.51, 1.06, 0.74, 0.62, 0.61, 0.44/)
END SELECT
```


Example of time / vertical profiles for RAQ (2a)

Vertical profiles tested for anthropogenic emissions in RAQ chemistry scheme

Example of time / vertical profiles for RAQ (2b)

Module UKCA_EMISS_FACTORS - Subroutine VERTICAL_EMISS_FACTORS

```
! Altitude of the interfaces in metres
interf ref = (/0.0, 20.0, 92.0, 184.0, 324.0, 522.0, 781.0, 1106.0/)
! Get a 3D vertical scaling factor for the given profile
 SELECT CASE (TRIM (vert fact)) ← NetCDF attribute vertical scaling
   Average vertical profiles for various SNAP source sectors.
   CASE ('Bieser modified SNAP01')
     vert scaling ref (:) = (/ 0.0, 0.0, 0.25, 51.0, 45.3, 3.25, 0.2 /)
   CASE ('Bieser modified SNAP07')
     vert scaling ref (:) = (/ 100.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)
    . . .
    ! Surface emiss in lowest model lev unless something different specified
   CASE ('surface', '')
     vert scaling 3d (:, :, 1)
                                                       1200
     vert scaling 3d (:, :, 2:) = 0.0
                                                       1000
    ! 3D emissions over all model levels
                                                        800
   CASE ('all levels', '3D')
                                                        600
     vert scaling 3d (:,:,:) = 1.0
                                                        400
                                                        200
END SELECT
                                                           1 2 3 4
                                                                    5 6 7 8 9 10
                                                                   SNAP sector
```


How to deal with special units

Attribute units in all NetCDF emission fields:

```
units = "kg m-2 s-1" or units = "kg/m2/s"
```

If you want to express in kg(N), kg(C) or kg(S):

Check http://cfconventions.org/Data/cf-standard-names/27/build/cf-standard-name-table.html

- See code in 2 routines within the module ukca_emiss_factors:
 - Strings automatically detected by base_emiss_factors
 - Conversions done in get_base_scaling

You might need to adapt them

New emission diagnostics (1)

Emission field Item number (in em_chem_spec) (in Sect. 50) 'NO 156 'CH4' 157 'CO' 158 'HCHO' 159'C2H6' 160'C3H8' 161'Me2CO' 162'MeCHO' 163 'C5H8' 164'C4H10' 165 'C2H4' 166 'C3H6' 167'TOLUENE' 168 'oXYLENE' 169'CH3OH' 170'H2' 171 'NO_aircrft' 172

- Available for RAQ & other schemes
- New items can be added in S50.

ukca_add_emiss_mod.F90

emissions(I)%diags (:, :,1) filled Column integrated & with time profiles applied

ukca_emdiags_struct_modF90:

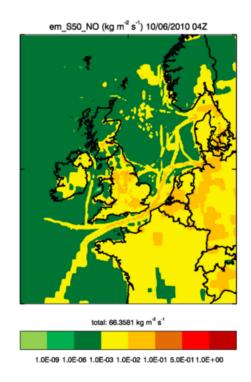
Declares a structure for emission diagnostics:

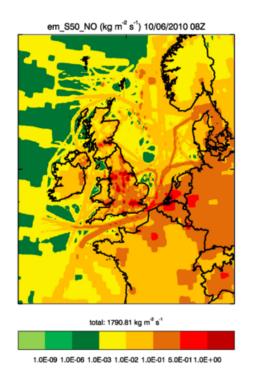
```
TYPE emdiags_struct
  ! Flags indicating if diagnostics selected
  LOGICAL :: l_em_no
  LOGICAL :: l_em_ch4
  ...
  ! Pointers to hold emission diagnostics
  REAL, POINTER :: em_no (:,:)
  REAL, POINTER :: em_ch4 (:,:)
  ...
  REAL, POINTER :: em_no_air (:,:,:)
END TYPE emdiags_struct
```

ukca_update_emdiagstruct_mod.F90

Update emission diagnostic values and flags in the "emdiags_struct"

ukca_emiss_diags_mod.F90

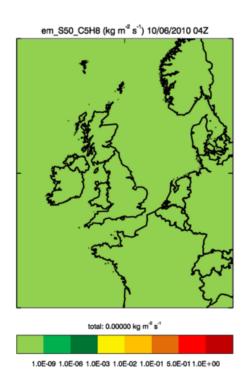

Output emission diagnostics

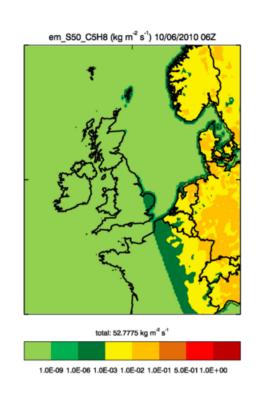


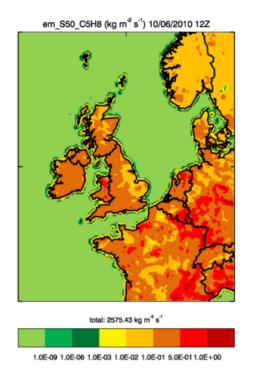
New emission diagnostics (2)

Emission diagnostics for NO:

- 1. With temporal factors applied
- 2. Column integrated (always for 2-D emissions)
- 3. In kg (NO) $m^{-2} s^{-1}$


New emission diagnostics (3)


Emission diagnostics for (non-interactive) **isoprene emissions**, with netCDF attributes:


tracer name = 'C5H8'

hourly_scaling = 'diurnal_isopems'

→ diurnal cycle applied via call to ukca_diurnal_isop_ems.F90

ukca_new_emiss_ctl.F90 (1)

IF (I first) THEN ! Read emission NetCDF files and look for the the emission fields ! in them to allocate all variables in the emissions structure. CALL ukca emiss init (...) ! Get scaling factors indicating how to to spread emissions ! over different vertical levels. Done it only once here and ! stored in the emissions structure, then valid for all time steps. DO I = 1, num em flds **CALL vertical_emiss_factors** (..., vert_fact_3d) emissions(I)%vert_scaling_3d (:,:,:) = vert_fact_3d (:,:,:) **END DO END IF** ! Check if it is time to update the emiss fields that ! we read from NetCDF files (depending on time step ! and update frequency). If needed then update the files. CALL ukca emiss update (...) ! Deal with online emissions. Always updated at each time step ! For the moment only NO_x from lightning and CH₄ from wetlands

ukca_new_emiss_ctl.F90 (2)

```
! Update all fields in the emissions super array:
! * Do conversions so that emissions are given as 'kg(tracer) m-2 s-1'
! * Update isoprene emissions if they are diurnally varying
DO I = 1, num em flds
  IF (emissions(I)%I_update) THEN
    CALL base emiss factors
    update "emissions(I)%values"
  END IF
  For isoprene: CALL ukca diurnal isop ems
                to apply diurnal cycle
END DO
! Inject emissions and do tracer mixing
CALL ukca_add_emiss ( ...)
! Call the emission diagnostics code if any of the diagnostics present
! in the routine GET_EMDIAG_STASH has been selected via stash.
CALL ukca_emiss_diags (...)
```


4. Final notes

Final notes Met Office

- This talk is based on UM vn9.2. Some functionalities not available for older UM versions.
- I have not covered some topics in detail (aerosol emissions, BVOC emissions, ...).

Useful reading material

Online UKCA tutorial

http://www.ukca.ac.uk/wiki/index.php/UKCA_Chemistry_and_Aerosol_Tutorial_5

- UKCA UMDP 84
 - Chapter 10: Emissions (ancillary system)
 - Chapter 11: New NetCDF emission system https://code.metoffice.gov.uk/doc/um/vn9.2/umdp.html

https://code.metoffice.gov.uk/doc/um/vn9.2/umdp.html

Code in ukca_setd1defs.F90

Complicated block of code further down in this routine

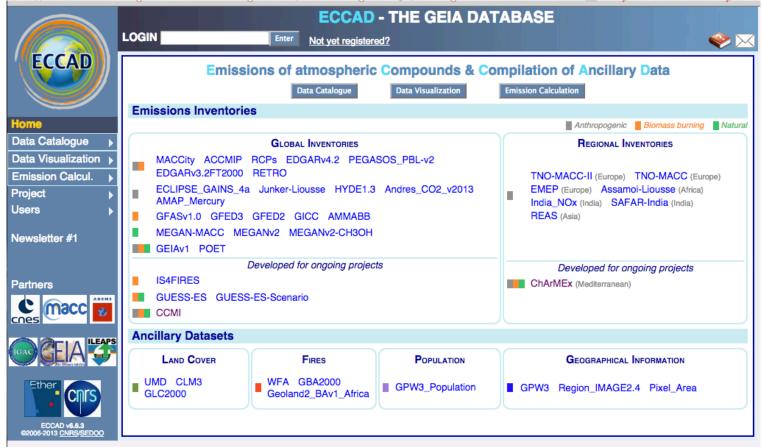
```
J = n_use_tracers
   IF (n_chem_emissions+n_3d_emissions+n_mode_emissions > 0) THEN
     DO i=1, n chem emissions + n 3d emissions
       UkcaD1Codes(J+i)%section = 0
       UkcaD1Codes(J+i)%item
                                   = n emiss first+i-1
       UkcaD1Codes(J+i)%len dim1 = row length
       UkcaD1Codes(J+i)%len_dim2 = rows
       IF (.NOT. (L ukca new emiss)) THEN
         UkcaD1Codes(J+i)%required = .TRUE.
        END IF
       UkcaD1Codes(J+i)%prognostic = .TRUE.
Special cases, emissions already available in UM
       IF (em\_chem\_spec(i)(1:7) == 'SO2\_low') THEN
         UkcaD1Codes(J+i)%item
                                = 58
        ELSEIF (em_chem_spec(i)(1:7) == 'S02_nat') THEN
         UkcaD1Codes(J+i)%item
                                  = 121
         UkcaD1Codes(J+i)%len dim3 = tr levels
        ELSEIF (em_chem_spec(i)(1:8) == 'S02_high') THEN
         UkcaD1Codes(J+i)%item
                                  = 126
        ELSEIF (em chem spec(i)(1:3) == 'NH3') THEN
         UkcaD1Codes(J+i)%item = 127
        ELSEIF (em_chem_spec(i) == 'BC_fossil ') THEN
         UkcaD1Codes(J+i)%item = 310
        ELSEIF (em_chem_spec(i) == 'BC_biofuel') THEN
         UkcaD1Codes(J+i)%item = 311
        ELSEIF (em chem spec(i) == 'OC fossil ') THEN
         UkcaD1Codes(J+i)%item = 312
        ELSEIF (em chem spec(i) == 'OC biofuel') THEN
         UkcaD1Codes(J+i)%item = 313
        ELSEIF (em chem spec(i) == 'Monoterp ') THEN
         UkcaD1Codes(J+i)%item = 314
       ELSEIF (em_chem_spec(i) == 'NVOC
         UkcaD1Codes(J+i)%item = 315
        ELSEIF (em chem spec(i) == 'BC biomass') THEN
         UkcaD1Codes(J+i)%item = 322
         UkcaD1Codes(J+i)%len dim3 = tr levels
        ELSEIF (em chem spec(i) == 'OC biomass') THEN
         UkcaD1Codes(J+i)%item = 323
         UkcaD1Codes(J+i)%len dim3 = tr levels
        ELSEIF (em_chem_spec(i) == 'S02_biomas') THEN
         UkcaD1Codes(J+i)%item = 324
         UkcaD1Codes(J+i)%len_dim3 = tr_levels
        ELSEIF (em\_chem\_spec(i)(1:3) == 'DMS') THEN
         UkcaD1Codes(J+i)%section = 17
         UkcaD1Codes(J+i)%item = 205
         UkcaD1Codes(J+i)%prognostic = .FALSE.
         IF (.NOT.L sulpc dms)UkcaD1Codes(J+i)%required=.FALSE.
                         ! DMS internally calculated if CLASSIC is OFF
        ELSEIF (em chem_spec(i)(1:7) == 'NO_airc') THEN
         UkcaD1Codes(J+i)%item
                                  = 340
         UkcaD1Codes(J+i)%len_dim3 = tr_levels
        ENDIF
      ENDDO
   ENDIF
```

Meaning

- STASH 301–309 in same order as em_chem_spec
- STASH items defined for some emissions (e.g. items 322, 323, 324 reserved for 3D emissions)

Main thing to remember:

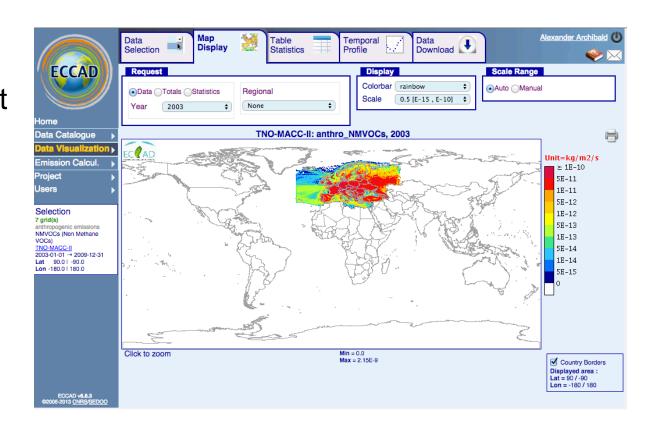
- single-level: items 301-320
- multi-level: items 321-340



5. Getting hold of some data

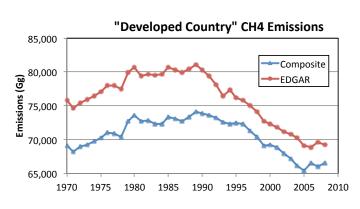
So where/how do we get information on emissions?

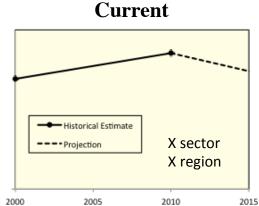
By far the best source of information is GEIA:

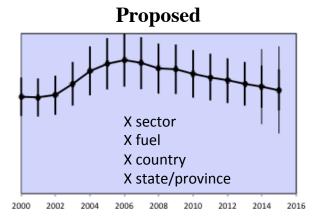


So where/how do we get information on emissions?

By far the best source of information is GEIA:


Easily select data for different compounds, from different datasets for different time periods and plot, download, visualize etc.





What about the future of emissions?

 Uncertainty quantification will be more important.

 Community Emissions Data System (CEDS) will be key for providing info for CMIP6 – you can get involved!