

RADAER AEROSOL-RADIATION INTERACTIONS

Nicolas Bellouin UKCA Training Workshop, Cambridge, 9 January 2018

LECTURE SUMMARY

- Why care about aerosol-radiation interactions?
- Theory of aerosol-radiation interactions
 - Mie scattering
- Description of RADAER
 - Methods
 - Diagnostics

AEROSOL-RADIATION INTERACTIONS

A BRIEF HISTORY (1/2)

~1490	Leonardo da Vinci notes that the side of a dust and smoke plume facing the Sun is far brighter than the other side.
1874	John Aitken makes the first measurements of atmospheric aerosol number, discovers nucleation and the role of aerosols in liquid cloud formation.
1908	Gustav Mie publishes in <i>Annalen der Physik</i> the solution to Maxwell equations for a homogeneous dielectric sphere.
1978	Launch of the Advanced Very High Resolution Radiometer (AVHRR), which will provide the first daily views of aerosols over the global oceans.

A BRIEF HISTORY (2/2)

1980s

2013

Atsumu Ohmura reports sizeable decreases in solar radiation reaching the surface, a phenomenon later coined "global dimming" and attributed to aerosol-radiation interactions.

1991 **Bob Charlson** *et al.* estimate in *Science* that the radiative forcing of sulphate aerosols is -1 to -2 W m⁻², with about half contributed by aerosol-radiation interactions.

IPCC best estimate and uncertainty range for ERFari: -0.45 (-0.95 to +0.05) W m⁻²

AEROSOL-RADIATION INTERACTIONS

Absorption

- Scattering out of viewing direction
- Scattering into viewing direction
- Emission

WHY WE CARE ABOUT AEROSOL-RADIATION INTERACTIONS

- They are part of the energy budget of the Earth: "aerosolradiation interactions" or "direct radiative effect".
- They affect visibility.
- For anthropogenic aerosols, they represent a radiative forcing of the climate system: (E)RFari or direct (effective) radiative forcing.
- They allow model evaluation against remote-sensing products.

WHY WE CARE

- Forest fires in Portugal, 3 August 2003
- Image by MODIS radiometer
- Above dark surfaces, scattering by aerosols increase shortwave planetary albedo: loss of energy at the top of atmosphere and surface
- Above bright surfaces, absorption by aerosols decrease shortwave planetary albedo: gain of energy at the top of atmosphere, loss of energy at surface.

WHY WE CARE

 Haywood et al. (2005) Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003?

WHY WE CARE

Radiative forcing of climate between 1750 and 2011 Forcing agent CO_2 Well Mixed Halocarbons Greenhouse Gases **├ ••** -| Other WMGHG CH₄ N₂O Anthropogenic Ozone Stratospheric | Tropospheric Stratospheric water vapour from CH₄ Black carbon Surface Albedo Land Use on snow Contrails Contrail induced cirrus - -Aerosol-Radiation Interac. Aerosol-Cloud Interac. Total anthropogenic Natural Solar irradiance 4 -1 2 3 0 1 Radiative Forcing (W m⁻²)

IPCC AR5, Figure 8.15 (2013)

MIE SCATTERING

AEROSOL SIZE DISTRIBUTION Reading

Aircraft measurements, Osborne et al. [2007]

The distribution of particle number (or surface, or volume) as a function of particle radius shows local maxima, called modes.

The size distribution is critical for interactions with radiation.

Radius range	r < 0.05 μm	r < 0.5 μm	r > 0.5 µm	
Mode	Nucleation, Aitken	Accumulation	Coarse	
Typical origin	Gas-to-particle conversion	Coagulation, combustion	Friction	

MIE SCATTERING

- Aerosol radii r (0.1 to 10 μ m) are of similar magnitude to the wavelength λ of shortwave and longwave radiation
 - Shortwave (or solar) spectrum: 0.25 to 5 µm
 - Longwave (or terrestrial) spectrum: 3 to 50 µm
- When $r \sim \lambda$, this is the domain of **Mie** scattering.
- Mie theory (1908) applies to homogeneous spheres, which is generally a good approximation for aerosols.
 - With the notable exception of mineral dust aerosols.

• Mie theory allows the calculation of the scattering and absorption cross sections σ_{sca} and σ_{abs} (in m²).

- According to Mie theory, σ_{sca} and σ_{abs} depend only on:

MIE SCATTERING

- The size parameter
 - $x = 2\pi r / \lambda$
- The complex refractive index
 - $m = n_{\rm r} {\rm i} \cdot n_{\rm i}$
- For hygroscopic aerosols, the impact of water uptake on x and m needs to be included.

PHASE FUNCTION

 Also calculated by Mie theory, the phase function gives the probability of being scattered in a given direction.

Boucher (2012) Aérosols Atmosphériques Figure 7.12

• In most climate models, phase function is represented by its average, the dimensionless asymmetry parameter *g*.

MIE SCATTERING FOR AN AEROSOL DISTRIBUTION

 The quantities valid for a given particle radius need to be integrated over the size distribution n(r)

$$\sigma_{sca}(r,\lambda,n_r,n_i) = \int Q_{sca}(r,\lambda,n_r,n_i) \ n(r) \ r^2 \ dr$$

- This is done for the three optical properties required:
- σ_{sca} , σ_{abs} , and g

RADAER

Mie look-up tables Aerosol mass **Refractive indices** Aerosol number Aerosol dry diameter VKCA RADAER Aerosol wet diameter Aerosol density Aerosol volume fraction, including water UKCA/GLOMAP Aerosol optical properties, averaged over SW and LW wavebands Aerosol optical depths SOCRATES radiation scheme

RADAER: LOOK-UP TABLES

- Mie scattering calculations are too expensive to be done at runtime.
- However GLOMAP size distributions are interactive, so aerosol optical properties cannot be prescribed offline.
- Solution: look-up tables containing optical properties for all realistic combinations of x and m.
- Aerosol size distributions are assumed lognormal, with fixed standard deviations depending on mode.

RADAER: LOOK-UP TABLES

- The look-up tables contain:
 - $\sigma_{sca}(x, n_r, n_i)$ and $\sigma_{abs}(x, n_r, n_i)$, in m⁻¹ (normalised per unit volume)
 - g
 - aerosol volume fraction $V(x) = \frac{4}{3} \pi \int x^3 n(x) dx$ (norm. per unit vol.)
- 51 values of x, 51 values of n_r , 51 to 801 values of n_i
- Realistic ranges depend on the aerosol mode and the range of wavelength considered:

Mode	Spectrum	x	n _r	n _i
Accumulation	SW	4 10 ⁻³ to 32	1.25 to 2	0 to 0.6
	LW	4 10 ⁻⁶ to 2	0.50 to 3	10 ⁻⁹ to 1
Coarse	SW	0.3 to 48	1.25 to 2	0 to 0.6
	LW	3 10 ⁻⁴ to 3	0.5 to 3	10 ⁻⁹ to 1

RADAER: LOOK-UP TABLES

- RADAER is set in the run_ukca namelist
- Rose: um > namelist > UM Science Settings > Section 34 UKCA

<u>نې</u>	l_ukca_radaer 🛛 🔀 Direct effect of MODE aerosols in radiation scheme	Irue di true	
<u>نې</u>	l_ukca_aie1 🚲 1st Indirect Effect of MODE aerosols (on radiation)	🖋 true	
<u>نې</u>	ukcaprec 🚲 File of pre-computed values	'\$UMDIR/vn\$VN/ctldata/spectral/ga7/RADAER_pcalc.ukca'	
<u>نې</u>	l_ukca_aie2 🛛 🔠 2nd Indirect Effect of MODE aerosols (on precip.)	Irue	
<u>نې</u>	ukcaaclw 🐻 LW file: aitken and insol acc modes	'\$UMDIR/vn\$VN/ctldata/UKCA/radaer/nml_ac_lw'	
<u>نې</u>	ukcaacsw 🚲 SW file: aitken and insol acc mode	'\$UMDIR/vn\$VN/ctldata/UKCA/radaer/nml_ac_sw'	
<u>نې</u>	ukcaanlw 🐻 LW file: soluble accumulation mode	'\$UMDIR/vn\$VN/ctldata/UKCA/radaer/nml_an_lw'	
<u>نې</u>	ukcaansw 🐻 SW file: soluble accumulation mode	'\$UMDIR/vn\$VN/ctldata/UKCA/radaer/nml_an_sw'	
<u>نې</u>	ukcacrlw 🚲 LW file: coarse-mode	'\$UMDIR/vn\$VN/ctldata/UKCA/radaer/nml_cr_lw'	Here, vn10.4.
<u>نې</u>	ukcacrsw 🚲 SW file: coarse-mode	'\$UMDIR/vn\$VN/ctldata/UKCA/radaer/nml_cr_sw'	
<u>نې</u>	l_ukca_radaer_sustrat 🛛 🚲 Sulphuric acid aerosol in stratosphere	Irue	

RADAER METHODS

- 1. Compute x from GLOMAP's modal wet diameter and current wavelength.
- 2. Compute *m* of internal mixture as volume-weighted average of component *m* (including water)
 - [NH₄]SO₄ or H₂SO₄, BC, OC, SOA, sea-salt, mineral dust, NH₄NO₃
- 3. Now that x and m are known, access the right σ_{sca} , σ_{abs} , g, and V in the relevant look-up table.
- 4. Convert to specific scattering and absorption (m² kg⁻¹) to comply with radiation code requirements: $k_{sca} = \frac{\sigma_{sca}}{\rho V}$, where ρ is the modal density (kg m⁻³).

RADAER KEY FUNCTIONS

- ukca_radaer_band_average()
 - Integrates aerosol optical properties across Unified Model spectral wavebands
 - 6 integration wavelengths per waveband
 - Weighted by solar irradiance (SW) or Planck's blackbody function (LW)

- ukca_radaer_compute_aod()
 - Optical properties remain monochromatic (6 wavelengths)
 - Integration over the column

RADAER: DIAGNOSTICS

- 1 per aerosol mode
- Section 2 diagnostics (2–300+), with 6 pseudo-levels representing wavelength: 0.38, 0.44, 0.55, 0.67, 0.87, and 1.02 μm
 GLOMAP-mode AOD
- Allow comparison against satellite retrievals (MODIS, MISR, POLDER, ...) and ground-based measurements (AERONET)
- Angstrom exponent can be computed from AODs at two different wavelengths.

0.55 µm, vn7.3, Bellouin et al., 2013.

RADAER: DIAGNOSTICS

Aerosol absorption optical depth (AAOD)

- 1 per aerosol mode
- Section 2 diagnostics, require a branch.
- Same 6 wavelengths (pseudo-levels) as AOD
- Allow calculation of singlescattering albedo (SSA):

$$\varpi_0 = 1 - \frac{AAOD}{AOD}$$

• Characterises absorption.

GLOMAP-mode SSA

0.8 0.84 0.88 0.92 0.96

0.55 µm, vn7.3, Bellouin *et al.*, 2013.

RADAER: DIAGNOSTICS

- Other diagnostics available (with branches before vn10.8):
 - Stratospheric aerosol optical depths
 - Same as AODs, but computed over stratospheric levels only.
 - Useful for volcanic eruption or geo-engineering studies.
 - Vertical profile of scattering or absorption coefficients
 - In recent UM version, those diagnostics are in m⁻¹.
 - In older versions they were either layer AODs or specific coefficients in m² kg⁻¹, so check the help text.
 - Useful to compare against lidars.

RADAER: EVOLUTION

- The code is fairly mature so no sizeable internal changes are planned at this stage.
 - Performance improvements are likely to be implemented in the coming years.
 - Could implement core-shell calculations of modal refractive index, but not seen as a priority.
- Coupling of RADAER with calculation of photolysis rates being developed by Michael Holloway at the University of Lancaster.

SUMMARY

- RADAER is a piece of code within the Unified Model's SOCRATES Radiation Scheme.
- It allows interaction between radiation and UKCA/GLOMAP aerosols.
- It offers important diagnostics, e.g. aerosol optical depths.
- More details: Unified Model Documentation Paper 84, section 13.2
- Reference: Bellouin *et al., Atmos. Chem. Phys.,* doi:10.5194/acp-13-3027-2013, 2013. [Section 5]
- n.bellouin@reading.ac.uk