

Earth System Modelling: An Introduction

Fiona M. O'Connor

UKCA Training Workshop, Cambridge, December 2022

- What do we mean by the Earth System?
- Motivation for Studying ES Science
- ♦ Climate Models → Earth System Models
- UK's Current Earth System Model & Plans
- Recent ES Science Highlights

What is the Earth System?

mate Moores - Earth System Moo ment UK ESM: UKES1.1

arouve Interested in ES Science?

ES Science Highlight

What is the Earth System?

Met Office One thing changes everything

at do we mean by the Earth System

ES Science Highlights

Motivation for Studying ES Science

nate Models - Earth System Mode

ent UK ESM: UKESM

Total O_3 forcing of 0.4 W m⁻² at the present day ... equivalent to a 3-bar electric fire running *all day every day* over the area of a football pitch!

Skeie et al., npj Climate Atmos. Sci., (2020)

Why? – Carbon Cycle Feedbacks (1)

Earth's carbon sources/sinks may be sensitive to climate change or increased CO_2 loading, changing the rate of uptake of (emitted) CO_2 from the atmosphere by the global biosphere

Response of C uptake to changing atmospheric CO₂ and climate – Large uncertainties, esp. in terrestrial carbon cycle

- Rising CO₂ increases photosynthesis & ocean uptake (-ve feedback)
- Rising temperature decreases both land & ocean uptake (+ve feedback)

IPCC 6th Assessment Report (AR6), 2021

© Crown copyright Met Office

Shindell et al., UN GMA (2021)

do we mean by the Earth Syster

ne we interested in ES Science?

☆ Climate Models → ES Models

Generation ESM: UKESM1

ES Science Highlights

Development of Models (1)

Figure courtesy of UCAR

Mid-1970s

Mid-1980s

FAR

SAR

TAR

AR4

AR5

Physical climate variability and the carbon cycle interact strongly Ocean biological activity, upwelling, carbon outgassing and nutrient transport

riddieg centre

Evolution of summer 1998 La Nina

An Earth System Model is only as good as the core physical/dynamical climate model that is simulating underlying climate processes and variability

Modelling fire occurrence in the Earth System is sensitive to the underlying vegetation and meteorology

(a) GFED4s

(b) UKESM1+INFERNO

- Overestimation of tree fraction in savanna biomes
- Underestimation of fire size in these regions (e.g., SHSA)

Teixeira et al., GMD (2021)

do we mean by the Earth Syster

ence tion id

interested in ES Science?

System Moc

Current/Next ESM: UKESM1.0 UKESM1.1 UKESM2.0

- Improved SO₂ dry deposition
- Reduced magnitude of aerosol forcing
- Bugfixes & re-tunings

UM-Based

Mulcahy et al., GMDD (2022)

$\mathsf{UKESM1.1} \rightarrow \mathsf{UKESM2.0}$

- Updated physical model (GC5)
- Improved stratospheric ozone
- Inclusion of interactive fires
- Methane emissions-driven capability
- Interactive pH parameterization
- Interactive ice sheets

UM-Based

Due to be ready by 2024/2025

Decision making

- Important?
- Expertise?
- Fit for purpose?
- Computational cost?
- Scientific performance?

t do we mean by the Earth System are we interested in ES Science?

ale Models --- Earth System Mod

t Generation ESMSULESM1s

Recent ES Science Highlights

Methane Forcing

Large uncertainty in methane forcing
Partly due to chemistry representation
Partly due to cloud forcing

Quantify how different BGC processes respond to climate change & how their responses influence further climate change

Assessment of climate & air quality impacts from different mitigation pathways, e.g., aerosols, land use, methane, etc..

Turnock et al., Earth's Future (2022)

Conclusions

Concluding Remarks

- The Earth System
- Motivation behind studying Earth System Science
- Development of Climate Models into Earth System Models
- Brief overview of UKESM1, UKESM1.1, & UKESM2
- Recent ES Science Highlights

Thank you for listening! Any questions?