Impact of the Pinatubo eruption on Isoprene

P. Telford1, J. Lathiere2, L. Abraham3, D. Beerling4, P. Braesicke5, N. Hewitt6, C. Johnson4, O. Morgenstern3, F. O’Connor4, R. Pike1, J. Pyle1, O. Wild5 and P. Young1

1. Centre for Atmospheric Science, University of Cambridge; 2. Department of Plant & Animal Sciences, University of Sheffield; 3. Department of Environmental Science, University of Lancaster 4. Met Office, Hadley Centre

Introduction:
The eruption of Mount Pinatubo volcano in June 1991 resulted in the largest stratospheric aerosol loading in the 20th century. The aerosol affected the atmosphere’s dynamics, heating the lower stratosphere and cooling the troposphere. These changes had significant impacts on atmospheric chemistry, producing record lows in the mid-latitude ozone column and affecting the concentrations of methane (shown below, Dlugokencky 2003) and other GHGs.

Bousquet et al. (2006) link much of the reduction in deep and NH anthropogenic emissions using an inversion technique. This technique leaves uncertainties in the tropics & does not directly address BVOC emissions or the impact of Pinatubo on them.

We study the impact of the eruption on the emissions of the important BVOC, isoprene, and the consequences on OH. We also examine the effects of the pollutant ozone. We perform this study using a CCM and an offline isoprene emission model. We ‘nudge’ the model (Telford et al., 2008) to reproduce the temperature changes and associated changes in circulation and investigate the changes in the atmospheric chemistry and emissions. We probe the cause of variability by fixing either the emissions of isoprene or the meteorology and noting the differences with the base-line case. In addition to being an interesting study this is part of the development of the QUEST Earth System Model (QESMOD), probing the connection between the biosphere & the atmosphere.

Model Set-up
We use the new UKCA/CCM (Morgenstern et al. 2008a, b) with a
- Horizontal grid of 1.5° x 1.5°
- 60 vertical levels from surface to 84 km
- Dynamical time-step of 30 minutes
- Tropospheric chemistry (CBM, CG, NMHC, NOx...)
- Methane fixed to X ppy
- Newton Raphson solver with time-step of 1 hour

The Pinatubo eruption is introduced into the model by
- nudging to ERA-40 1991 to obtain dynamical response
- including time-varying isoprene emissions

The isoprene emissions are calculated using the SDOVM (Boerling et al., 1997) and MEGAN (Easter et al., 2006) models. The SDOVM takes information about the climate to produce a distribution of different vegetation types. Information about vegetation type and climatic conditions are used by MEGAN to calculate isoprene emissions.

Effect on Isoprene Burden:
- Investigate effect of changing emissions & meteorology
- Compare isoprene burden between the different runs
- Effect of changing isoprene emissions is determined from the difference between the base & emiss runs (base - emiss)

Effect on ‘Tropospheric’ OH:
- Changes in isoprene concentrations impact on the oxidising capacity of the troposphere

Effect on Surface Ozone:
- Plot surface ozone changes from meteorology & emissions
- Effect of fixing isoprene emission is very small
- Fixing meteorology has a larger effect

Effect on Surface Ozone:
- Investigate the distribution of (base-emiss) averaged over 1993
- Calculate in Boundary Layer, to maximise sensitivity
- First plot changes in isoprene burden

Regional Changes of Emissions:
- Changes in OH anticorrelate with those in isoprene
- Important regions for evaluating methane growth rates

Conclusions and Status:
- Demonstrated that modelled changes in emissions of isoprene are important after the eruption of Pinatubo
- These changes have a sizeable impact on OH concentrations and localised impact on ozone
- May explain part of the changes in growth rates of methane in the early 1990s
- However, work is only preliminary, want to repeat with a more complete model including an interactive photosynthesis scheme
- Need a more complete analysis of sources and sinks of ozone and OH

References:
1. D. Beerling et al., GRL 6 (1997)
4. A. Gaussian et al., ACP 6 (2006)
5. O. Morgenstern et al., GRL 35 (2008)
6. O. Morgenstern et al. in prep. for GMDD (2008b)

Contact:
paul.telford@atm.cam.ac.uk
http://www.atm.cam.ac.uk

Summary: The eruption of Mount Pinatubo produced a significant perturbation to the Earth’s climate. This change in climate is expected to produce changes in the emissions of isoprene, an important BVOC, affecting OH concentrations. This may help explain some of the observed changes in the growth rate of methane. In preliminary model results we note that the post-Pinatubo climatic change does produce a reduction in isoprene and increase in OH. This increase in OH might be expected to decrease methane growth rates.