

Atmospheric response to CH₄ pulse emissions

Fiona O'Connor

Earth System Science 2010, Edinburgh, 10-13 May 2010.

- Motivation
- Objectives of current study
- Experimental setup
- Results and analysis
- Conclusions and further work

Motivation (1) – Potential increase in CH_4 ems in future

Westbrook et al., GRL 2009

Motivation (2) – Atm. Chemistry

- Oxidation of CH₄ results in the formation of trop. O₃, strat. H₂O, and CO₂
- In steady state, CH₄ is removed with an e-folding lifetime of 8.6 years
- An increase in CH₄ causes a reduction in its own sink, leading to a perturbation lifetime longer than the steady state lifetime
- CH₄ may influence formation of aerosols

Motivation (3) –Radiative Forcing

RF is attributed to primary emissions by Shindell et al., 2005.

RF attributed to CH₄ ems may be even higher if aerosol formation and ozone damage to vegetation are considered (Sitch et al., 2007; Shindell et al., 2009)

Objectives of Study

- Examine the atmospheric response to CH₄ pulse emissions (CH₄, O₃, OH, Lifetime)
- Explore sensitivity of response to:
 - Size of emission pulse
 - Location of emission pulse
 - Season of emission pulse
- Chemistry-Aerosol Coupling (Sulphate)
- Radiative Forcing (CH₄, O₃, H₂O, Sulphate)

Gas-Phase Chemistry: Experimental Setup (1)

- Control
- Expt 1 Small Arctic pulse (Jan)
- Expt 2 Small Arctic pulse (Jul)
- Expt 3 Large Arctic pulse (Jan)
- Expt 4 Small Tropics pulse (Jan)
- Expt 5 Small Tropics pulse (Jul)

Atmosphere-only version of HadGEM2-ES using Yr-2000 AR5 ems (526 TgCH₄/year)

Small pulse: ~ 50 TgCH₄ Large pulse: ~ 500 TgCH₄

Emissions 500 Control expt Pulse expt CH4 emissions / kg (CH4) month⁻¹ 400 300 200 100 0 20 40 0 60

No of months since start of integration

Percentage difference between Pulse and Control expts - JAN

Chemistry-Aerosol Coupling: Experimental Setup (2)

- Control
- Expt 1 Small Arctic pulse (Jan)

Coupling between gas-phase chemistry and sulphate aerosol is on

Atmosphere-only version of HadGEM2-ES using Yr-2000 AR5 ems (526 TgCH₄/year)

Small pulse: ~ 50 TgCH₄

Chemistry-Aerosol Results

SW All-sky TOA forcing (mW/m²)

JUL: 90N 6 mths after CH₄ pulse^{45N}

Consideration of Potential CH₄ Releases (1)

- Pulse sizes: 50 Tg CH_4 and 500 Tg CH_4
- With a global mean temperature rise of 1.5°C, wetlands may emit an extra 50 Tg CH₄/year
- Terrestrial hydrates: 4-16 x 10⁵ Tg CH₄
- Marine hydrates: 1-6 x 10⁶ Tg CH₄

Consideration of Potential CH₄ Releases (2)

- Terrestrial hydrates: 4 16 x 10⁵ Tg CH₄
- Consider a global mean temp. rise of 2.5°C
- Harvey and Huang (1995) suggest a cumulative release of 0.5 % within 500 years
- Max. forcing of 0.3 -> 1.2 Wm⁻²
 Mean forcing of 0.1 -> 0.4 Wm⁻² over 100 years

Conclusions

Gas-phase chemistry

- Perturbation lifetime of 12.0 years
- Independent of size, location, and season
- 100-year GWP of CH_4 is 24 (CH_4 , O_3 , H_2O)

Chemistry-Aerosol Interactions

- Reduction in accum. mode sulphate aerosol
- Global mean positive SW forcing at TOA
- Sulphate adds 0.8 to 100-year GWP of CH₄
- RF estimates for future potential releases

- Process-based assessment of impact on sulphate
- Impact of CH₄ ems on sulphate 1st indirect effect
- Impact of CH₄ ems on nitrate aerosol

Thank you for listening! Any questions?