Wet Deposition in UKCA (UM 8.4)

Zak Kipling

Atmospheric, Oceanic and Planetary Physics Department of Physics University of Oxford

with thanks to Colin Johnson, Luke Abraham, Jane Mulcahy, Graham Mann, Mohit Dalvi, Philip Stier and the rest of the UKCA team

NERC UKCA Training Course, University of Cambridge

Friday 9 January 2015

European Research Council Established by the European Commission

Outline

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition of gas-phase chemicals

Wet deposition o aerosol particles

Note on branches

References

Introduction

2 Wet deposition of gas-phase chemicals

- Henry's law
- Linkage to cloud and precip. variables
- Implementation
- 3 Wet deposition of aerosol particles
 - Nucleation scavenging
 - Below-cloud impaction scavenging

Introduction

Wet Deposition in UKCA

Introduction

- Wet deposition of gas-phase chemicals
- Wet deposition of aerosol particles
- Note on branches
- References

• Wet deposition, by which trace gases and aerosols are removed from the atmosphere by precipitation and deposited at the surface, is one of the major sink processes for soluble compounds in the atmosphere.

• It dominates over dry deposition for soluble trace gases and for all but the coarsest sea-salt and dust aerosols.

Overview

Wet deposition of gas-phase chemicals

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition of gas-phase chemicals

- Linkage to cloud and precip. variables Implementation Configuration
- Hand-edit
- Wet deposition of aerosol particles
- Note on branches
- References

• Equilibrium between gas phase and solute in cloud droplets (Henry's law).

• Removal of solute represented as a first-order loss rate proportional to rain rate and fed into solver.

• Formulation based on Giannakopoulos et al. (1999).

Henry's law

Wet Deposition in UKCA

Introduction

Wet deposition o gas-phase chemicals

Henry's law

Linkage to cloud and precip. variables Implementation Configuration

Wet deposition of aerosol particles

Note on branches

References

• Concentration of dissolved gas is proportional to its partial pressure (with a temperature-dependent coefficient).

$$\mathcal{H}_{\text{eff}} = \underbrace{k_{298 \text{ K}}}_{\text{Coefficient at 298 K}} e^{-\frac{\Delta H}{R} \left(\frac{1}{T} - \frac{1}{298 \text{ K}}\right)}$$
(1)

- Multiplied by a factor $1 + k_{aq}/H^+$ to account for dissociation in the aqueous phase, where k_{aq} has a similar temperature-dependent form.
- Applying Henry's law gives the fraction of a trace gas which is dissolved in cloud water.

Linkage to cloud and precip. variables

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition o gas-phase chemicals

Henry's law

Linkage to cloud and precip. variables

Configuration

Hand-edit

Wet deposition of aerosol particles

Note on branches

- Removal rate of the dissolved trace gas is proportional to the diagnosed rain rate on each level, via an emiprical scavenging coefficient.
- Coarse temperature-based limits on scavenging in polar regions (no scavenging by ice or snow).
- No account is taken of the fractional removal rate of cloud liquid water or the cloud and rain fractions.
- Convective scavenging is carried out seperately from convective transport, and thus acts on the post-convection environment rather than the rising plume.

Implementation

- Wet Deposition in UKCA
- Zak Kipling
- Introduction
- Wet deposition c gas-phase chemicals
- Henry's law
- Linkage to cloud and precip. variables
- Implementation
- Configuration
- Wet deposition of aerosol particles
- Note on branches
- References

Implemented in UKCA_WDEPRT.

• Configuration in UKCA_CHEM_<scheme> (e.g. UKCA_CHEM_STRATTROP)

• Hand-edit to set total number of species subject to wet deposition (JPDW).

Configuration: selecting species

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition o gas-phase chemicals Henry's law

Linkage to cloud an precip. variables

Configuration

Hand-edit

Wet deposition of aerosol particles

Note on branches

References

In UKCA_CHEM_<scheme> (e.g. UKCA_CHEM_STRATTROP):

 Count of species subject to wet deposition, e.g.: INTEGER, PARAMETER, PUBLIC :: nwet_st_aer = 34

• Switch to enable wet deposition for a given species, e.g.: TYPE(CHCH_T), PUBLIC :: chch_defs_strattrop_aer(1:87)=(/ & ... chch_t(3,'03 ', 1,'TR ','0x ', 1, 1, 0), & chch_t(4,'N ', 1,'TR ','NOx ', 0, 0, 0), & ...

Configuration: Henry's law coefficients

Wet Deposition in UKCA

```
• Henry's law coefficients, e.g.:
```

Zak Kipling

```
REAL :: henry_defs_strattrop_aer(1:6,1:nwet_st_aer)=RESHAPE((/
              1 0.3
          0.1130E-01, 0.2300E+04, 0.0000E+00, 0.0000E+00, 0.0000E+00. 0.0000E+00.&
         . . .
         1
             12 HC1
          0.1900E+02, 0.6000E+03, 0.1000E+05, 0.0000E+00, 0.0000E+00, 0.0000E+00, &
Linkage to cloud and
              6 H2O2
         1
          0.8300E+05, 0.7400E+04, 0.2400E-11,-0.3730E+04, 0.0000E+00, 0.0000E+00, &
Configuration
         . . .
             31 SO2
         1
          0.1230E+01, 0.3020E+04, 0.1230E-01, 0.2010E+04, 0.6000E-07, 0.1120E+04,&
          . . .
           ^{\prime}
                        -DH/R
                                      k 298 -DH/R
                                                               k_298 -DH/R
             k 298
           Main values for H_eff
                                     Values for k_aq Values for k_aq
                                      (1st dissociation) (2nd dissociation)
```


Hand-edit

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet

deposition o gas-phase chemicals

Henry's law Linkage to clou

precip. variables

Configuration

Hand-edit

Wet deposition of aerosol particles

Note on branches

- Unfortunately, the count of species subject to wet deposition is also included in a namelist, as well as directly in the source code, and these values must be kept in sync.
- If the value in the source code is changed, the one in the namelist can be updated via a hand-edit:

set_jpdw_ <nn>.ed</nn>
ed CNTLATM <<\EOF
JPDW = <nn>,</nn>
wq
EOF

Wet deposition of aerosol particles

Wet Deposition in UKCA

Introduction

Wet deposition o gas-phase chemicals

Wet deposition of aerosol particles

Nucleation scavenging

precipitation

Below-cloud

impaction scaven

Rain

Show

Note on branches

References

Aerosol particles can be removed by precipitation in three ways:

nucleation scavenging where aerosol particles act as cloud condensation nuclei (CCN) for droplets which then form rain;

in-cloud impaction scavenging where aerosol particles are collected by impaction with cloud droplets which then form rain (not included in the model);

below-cloud impaction scavenging where aerosol particles are collected by impaction with falling precipitation.

Nucleation scavenging

Wet Deposition in UKCA

Introduction

- Wet deposition o gas-phase chemicals
- Wet deposition aerosol particles
- Nucleation scavenging
- Large-scale precipitation
- Convection
- Below-cloud impaction scavengin
- Rain
- Snow
- Implementation
- Note on branches
- References

• Aerosol particles are incorporated into cloud droplets when they act as CCN (*activation*).

• The scavenging schemes use a simplified approach, rather than using the diagnostics from the activation scheme.

Nucleation scavenging (large-scale): activation

Wet Deposition in UKCA

Introduction

Wet deposition o gas-phase chemicals

Wet deposition of aerosol particles Nucleation

Large-scale precipitation

Convection

Below-cloud impaction scavengir

Rain

Snow

Implementation

Note on branches

References

 Based on Spracklen et al. (2005), soluble particles larger than a fixed critical wet radius are assumed to act as CCN. This radius is set in UKCA_SCAVENGING_MOD:
 ! radius cutoff for activation

REAL, PARAMETER :: nscavact = 103.0e-9

- All of the coarse mode, none of the nucleation mode, and the upper end of the Atiken and accumulation modes.
- This gives the fraction of number and mass in each mode (in the cloudy fraction of the grid box) which are dissolved and thus susceptible to wet deposition.
- There is an alternative option in the UMUI to use the fixed scavenging ratios from ECHAM5–HAM (Stier et al., 2005).

Nucleation scavenging (large-scale): removal

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition c gas-phase chemicals

Wet deposition of aerosol particles Nucleation

Large-scale precipitation

Convection

Below-cloud impaction scavengin

Rain

Snow

Implementation

Note on branches

- These are then removed at the same fractional rate as the cloud water itself is removed as precipitation, based on diagnostics from the large-scale precip. scheme (UMDP 26).
- Removal of cloud water is the sum of autoconversion (PRAUT), accretion by rain (PRACW) and riming by ice/snow (PIACW/PSACW).
- These are added together in UKCA_AERO_CTL before being passed to the scavenging routine (UKCA_RAINOUT).

Nucleation scavenging (large-scale): caveats

- Wet Deposition in UKCA
- Zak Kipling
- Introduction
- Wet deposition o gas-phase chemicals
- Wet deposition aerosol particles Nucleation
- Large-scale precipitation
- Convection
- Below-cloud impaction scavengin
- Rain
- Snow
- Implementation
- Note on branches
- References

- No more than 90% by number of a given mode may be removed in a timestep.
- For very low liquid water contents, a fixed removal timescale is applied instead.

• Below 258 K, all particles in the insoluble modes are also susceptible to wet deposition (but by rain only – there is no actual treatment of ice nucleation scavenging yet).

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition o gas-phase chemicals

Wet deposition of aerosol particles

scavenging Large-scale

precipitation Convection

Below-cloud impaction scavengin

Rain

Snow

Implementation

Note on branches

- Based on Kipling et al. (2013), this operates from within the convection scheme (UMDP 27), removing aerosol as the tracers are transported within the convective updraught.
- All of the soluble accumulation and coarse modes, none of the nucleation mode and a configurable fraction (default 50%) of the soluble Aitken mode considered to be dissolved.
- This aerosol is removed at the same fractional rate as condensate is converted to precipitation within the convective plume.

Nuc. scavenging (convective): implementation

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition o gas-phase chemicals

Wet deposition aerosol particles Nucleation

> Large-scale precipitation

Convection

- impaction scavengir Rain
- Snow

Implementation

Note on branches

- Implemented as UKCA_PLUME_SCAV in UKCA_SCAVENGING_MOD.
- Called from CONVEC2 at each level within the body of the convection scheme, using in-plume variables, rather than from anywhere within UKCA_MAIN1 (which sees only the end-of-timestep environment).
- Usual UKCA/GLOMAP-mode variables therefore not available, and logic is required to identify the number and mass tracers from the combined UM tracers array.

Wet Deposition in UKCA

- Zak Kipling
- Introduction
- Wet deposition o gas-phase chemicals
- Wet deposition aerosol particles
- Nucleation scavenging
- Large-scale precipitation
- Convection
- Below-cloud impaction scavengin
- Rain
- Snow
- Implementation
- Note on branches
- References

- UKCA_SCAV_INIT sets up the mappings required to identify the tracers, and is called from UKCA_INIT.
- UKCA_CALC_AQUEOUS calculates the fraction of each tracer which is susceptible to wet deposition.
- UKCA_PLUME_SCAV calls this and calculates the rate at which each tracer is removed from the plume at this level.
- Note that diagnostics for convective removal rates are currently missing.

Below-cloud impaction scavenging: rain

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition o gas-phase chemicals

Wet deposition o aerosol particles

scavenging

precipitation

Convection

impaction scavengin

Rain

Snow Implementation

Note on branches

References

• This follows Slinn (1984), based on a 2D look-up table of scavenging efficiencies for different aerosol and raindrop sizes.

• Aerosol modes are treated as monodisperse at their geometric-mean wet radius.

• Raindrops are divided into 7 bins assuming a Marshll–Palmer distribution.

Below-cloud impaction scavenging: snow

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition of gas-phase chemicals

Wet deposition aerosol particles

Large-scale precipitation

Convection

Below-cloud impaction scavengin

Rain

Snow

Implementation

Note on branches

References

• This is implemented as a power law for each mode following Wang et al. (2011), where the fraction removed from each mode *m* is:

prescribed coefficient and exponent for each mode

 $k_m = a_m$

total (LS+conv.) snowfall rate

Below-cloud impaction scavenging: implementation

- Wet Deposition in UKCA
- Zak Kipling
- Introduction
- Wet deposition or gas-phase chemicals
- Wet deposition aerosol particles
- Nucleation scavenging
- Large-scale precipitation
- Convection
- Below-cloud impaction scavenging
- Rain
- Snow
- Implementation
- Note on branches
- References

• Code for both rain and snow is in UKCA_IMPC_SCAV.

• Look-up table for rain is in UKCA_MODE_SETUP.

• Large-scale and convective precip. are handled similarly, except that they are assumed to apply over 100% and 30% of the grid-box respectively (the large-scale rain fraction diagnostic is not used).

A final note on branches

Wet Deposition in UKCA

Introduction

- Wet deposition of gas-phase chemicals
- Wet deposition o aerosol particles

Note on branches

References

• A number of the features described were not yet in the UM trunk at 8.4, although they are in the vn8.4_UKCA package branch.

• The description in the 8.4 version of UMDP 84 describes the trunk rather than the branch, so you may be better referring to the 9.2 version in this instance.

References

Wet Deposition in UKCA

Zak Kipling

Introduction

Wet deposition of gas-phase chemicals

Wet deposition o aerosol particles

Note on branches

- Giannakopoulos, C., Chipperfield, M. P., Law, K. S., and Pyle, J. A.: Validation and intercomparison of wet and dry deposition schemes using 210Pb in a global three-dimensional off-line chemical transport model, Journal of Geophysical Research: Atmospheres, 104, 23761–23784, doi:10.1029/1999JD900392, URL http://dx.doi.org/10.1029/1999JD900392, 1999.
- Kipling, Z., Stier, P., Schwarz, J. P., Perring, A. E., Spackman, J. R., Mann, G. W., Johnson, C. E., and Telford, P. J.: Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon, Atmos. Chem. Phys., 13, 5969–5986, doi:10.5194/acp-13-5969-2013, URL http://www.atmos-chem-phys.net/13/5969/2013/, 2013.
- Slinn, W. G. N.: Precipitation Scavenging, in: Atmospheric Science and Power Production, edited by Randerson, D., pp. 466–532, US Department of Energy, Springfield, VA, 1984.
- Spracklen, D. V., Pringle, K. J., Carslaw, K. S., Chipperfield, M. P., and Mann, G. W.: A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties, Atmos. Chem. Phys., 5, 2227–2252, doi:10.5194/acp-5-2227-2005, URL http://www.atmos-chem-phys.net/5/2227/2005/, 2005.
- Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, doi:10.5194/acp-5-1125-2005, URL http://www.atmos-chem-phys.net/5/1125/2005/, 2005.
- Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo, Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos. Chem. Phys., 11, 12453–12473, doi:10.5194/acp-11-12453-2011, URL http://www.atmos-chem-phys.net/11/12453/2011, 2011.