

Tracer transport in the Unified Model

Nigel Wood, Dynamics Research

- The Unified Model
- Some notation and nomenclature
- The semi-Lagrangian scheme
- ENDGame
- Does it matter?
- SLICE recovering conservation
- Conservation in LAMs
- GungHo!
- Bibliography
- Transport options in ROSE

THE UNIFIED MODEL

Brown et al. (2013)

- Operational forecasts
 - Mesoscale (resolution approx. 1.5km)
 - ➢Global scale (resolution approx. 10km)

- Global and regional climate predictions
 - Resolution around 120km
 - ➢ Run for 10-100-... years

- Seasonal predictions
 - ➢ Resolution approx. 60km

- Research mode
 - Resolution 1km 10m

The consequence of unification

50km

30km

70km

Met Office 300 km

Global model cf. other centres

NOTATION AND NOMENCLATURE

Let p_X denote the *density*, *concentration*, or *mass per unit volume* of species X

- Let ρ_d denote the density of *dry air*

• Then $m_X = \rho_X / \rho_d$ is the *mixing ratio* of species X

By definition m_d = 1

Densities/concentrations transported according to:

$$\frac{\partial \rho_X}{\partial t} + \nabla \cdot (U \rho_X) = 0 \qquad \begin{array}{c} \text{Eulerian flux} \\ \text{form} \end{array}$$
$$\frac{D}{Dt} \left(\int_V \rho_X dV \right) = 0 \quad \begin{array}{c} \text{Lagrangian form} \\ \text{(V=air parcel)} \end{array}$$

Mixing ratios/parcel labels (e.g. age of air, mass of air parcel) are transported according to:

$$\frac{\partial m_X}{\partial t} + \boldsymbol{U} \cdot \nabla m_X = 0 \text{ Eulerian form}$$

$$\frac{Dm_X}{Dt} = 0$$

Lagrangian form

THE SEMI-LAGRANGIAN SCHEME

- DF/Dt=0 a natural form
- Integrate along the path a fluid parcel follows

• $F(\mathbf{x}+d\mathbf{x},t+dt) = F(\mathbf{x},t)$ where $d\mathbf{x}/dt=\mathbf{U}$

- Lagrangian model simply tracks air parcels
- This is the basis of the NAME model for plumes etc
- But, generally end up with very inhomogeneous distribution, requires interpolation/aggregation to where need answer
- Semi-Lagrangian schemes try to maintain the benefits of Lagrangian approach but on Eulerian grid

- Arrival point, X_A, always a grid point
- Departure point, X_D, in general anywhere
- Two steps:

 \succ Evaluate trajectory, i.e. where X_D is relative to X_A

 \succ Evaluate transported field at X_D

Staniforth and Côté (1991)

Excellent dispersion

Captures well the speed of propagation of waves

≻Key for good weather prediction

- Appropriate level of scale selective damping
- Excellent stability

➢Depends on physical (inverse) time scale dU/dX, not numerical (inverse) time scale U/∆X

➢Particularly beneficial in large scale flows (cf. jets)

And in polar regions (operationally, polar ∆X=12 m, dt = 4 mins, and CFL = 1 for U=5 cm/s!)

Kohei Aranami (MetO/JMA)

Initial Conditions

Kohei Aranami (MetO/JMA)

- Lack of locality due to large time step, means departure point can be long way from arrival
- Conservation consider cubic interpolation:

- Met Office
 - Even in case of interpolating mass (so don't have to worry about density variations and nonuniform grid spacing), require:

$$\sum_{i} \mathbf{m}_{i}^{n} = \sum_{i} \mathbf{m}_{i}^{n+1} = \sum_{i} \left(\mathbf{a}_{j} \mathbf{m}_{j(i)-2}^{n} + \mathbf{b}_{j} \mathbf{m}_{j(i)-1}^{n} + \mathbf{c}_{j} \mathbf{m}_{j(i)}^{n} + \mathbf{d}_{j} \mathbf{m}_{j(i)+1}^{n} \right)$$

For this to hold independent of mass distribution

$$(\boldsymbol{a}_{i+2} + \boldsymbol{b}_{i+1} + \boldsymbol{c}_i + \boldsymbol{d}_{i-1})\mathbf{m}_i^n = \mathbf{m}_i^n$$

which is only true if wind is uniform

• [Cf. $a_i + b_i + c_i + d_i = 1$]

ENDGame: Even Newer Dynamics for General atmospheric modelling of the environment

(Operational since 2014; Wood et al 2014)

- Semi-Lagrangian scheme applied to all variables
- Special handling of vector aspects for wind
- Lagrangian interpolation:
 - Horizontal
 - Bi-cubic for all variables
 - Vertical
 - Cubic for wind components
 - Cubic-Hermite for potential temperature and moisture variables
 - Quintic for all other tracers

- Conservation:
 - Priestley algorithm (optionally) applied to moisture and tracer variables and potential temperature
- Monotonicity:
 - Bermejo and Staniforth (optionally) applied to moisture and tracer variables and potential temperature

Without mass fixer relative change in total mass per time step is O(10⁻⁵)

- \Rightarrow apply multiplicative fixer every time step
- Important that it preserves potential energy

• Achieved by:
$$\rho^{n+1} = (A+Bz)\rho^*$$

• A and B chosen such that

$$\sum \rho^{n+1} dV = \sum \rho^n dV$$

$$\sum \rho^{n+1}gzdV = \sum \rho^*gzdV$$

Met Office

- Notes that loss of conservation arises from interpolation
- Compares low-order (specifically linear) interpolation with a high-order scheme (e.g. cubic or quintic)
- Argues that where these are different is where conservation will be lost
- Therefore adjusts high-order interpolated field proportionately to that difference
- Formally non-local but attempts to localize

Monotonicity algorithm

 Higher-order interpolation scheme more accurate on smooth data

➤Cubic Lagrange is 3rd order accurate in space

- But applied to unsmooth data it will create overshoots and undershoots
- When this occurs high-order interpolation is not appropriate or sensible
- Could reduce the order progressively
- Pragmatic: limit the interpolated value to be bounded by the 8 values surrounding departure point

DOES IT MATTER WHAT WE DO?

1000

90N

60N

 $^{-6}$

-9

30N

-3

0

Area-weighted rms diff = 1.73

0

30S

3

60S

6

30S

3

60S

6

9

90S

0

Area-weighted rms diff = 1.33

0

1000 2

90N

60N

 $^{-6}$

 $^{-9}$

30N

-3

0137

9

90S

Chris Smith (Met Office)

© Crown copyright Met Office

David Walters (Met Office)

SEMI-LAGRANGIAN INHERENTLY CONSERVATIVE AND EFFICIENT

RECOVERING CONSERVATION...

Conservative semi-Lagrangian

- Inherent conservation \Rightarrow must use density or concentration, ρ_x
- But instead of usual Eulerian flux form

$$\frac{\partial \rho_X}{\partial t} + \nabla \cdot \left(\boldsymbol{U} \rho_X \right) = 0$$

Use Lagrangian form:

$$\frac{D}{Dt} \left(\int_{V} \rho_{X} dV \right) = 0$$

Integrate along trajectory:

Zerroukat, Wood & Staniforth (2002)

CONSERVATION IN LIMITED AREA MODELS...

GUNGHO INTO THE FUTURE!

Paul Selwood & Andy Malcolm (Met Office)

Met Office

- At 17km resolution, grid spacing near poles = 35m
- At 10km spacing = 12m
- At 1km reduces to 12 cm!

"Working together harmoniously"

Met Office

- Cubed-sphere is principal contender
- But grid non-orthogonal
- To maintain same accuracy using mixed finiteelement spatial discretization...
- ...coupled with an *Eulerian flux form* transport scheme (either finite element or finite volume)
- Redesigning Unified Model
 >F2003

Separation of concerns - PSyKAI

Targeting mid-2020's

Straka cold bubble

Low Order Mixed FEM; GH = 50 m; EG = 50 m

Orographic gravity waves

Low-order Mixed FEM; stratified flow over a small hill; uniform Cartesian domain

Baroclinic wave

Low Order Mixed FEM; GH = C96 ~ 1 degree; EG = 1 degree

Day 8 surface pressure

Thank you!

Questions?

See extra slides for Bibliography and How to select options in UM

Met Office

- Aranami, K., Davies, T. & Wood, N. (2015), A mass restoration scheme for limited area models with semi-lagrangian advection, Q. J. R. Meteorol. Soc. 141, –. DOI:10.1002/qj.2482.
- 2. Bermejo, R. & Staniforth, A. (1992), The conversion of semi-Lagrangian advection schemes to quasi-monotone schemes, *Mon. Wea. Rev.* **120**, 2622–2632.
- 3. Brown, A., Milton, S., Cullen, M., Golding, B., Mitchell, J. & Shelly, A. (2012), Unified modeling and prediction of weather and climate: a 25-year journey, *Bull. Amer. Meteor. Soc.* **93**, 1865–1877.
- 4. Priestley, A. (1993), A quasi-conservative version of the semi-Lagrangian advection scheme, *Mon. Wea. Rev.***121**, 621–629.
- 5. Staniforth, A. & Côté, J. (1991), Semi-Lagrangian integration schemes for atmospheric models a review, *Mon. Wea. Rev.* **119**, 2206–2223.
- Wood, N., Staniforth, A., White, A., Allen, T., Diamantakis, M., Gross., M., Melvin, T., Smith, C., Vosper, S., Zerroukat, M. & Thuburn, J. (2014), An inherently massconserving semi-implicit semi-Lagrangian discretization of the deep-atmosphere global nonhydrostatic equations, *Q.J.R. Meteorol. Soc.* 140, 1505–1520. DOI:10.1002/qj.2235.
- Zerroukat, M., Wood, N. & Staniforth, A. (2002), SLICE: A Semi-Lagrangian Inherently Conserving and Efficient scheme for transport problems, *Q. J. R. Meteorol. Soc.* 128, 2801–2820.
- 8. Zerroukat, M. And Shipway, B. (2017), ZLF (Zero Lateral Flux): A simple mass conservation method for semi-Lagrangian based limited area models, Submitted to *Q*.

J. R. Meteorol. Soc.

TRACER TRANSPORT OPTIONS IN ROSE

with thanks to Chris Smith

$\underset{Met Office}{\text{Met Office}} \text{ Interpolation options in Rose:}$

Separate options for moisture and tracers ...

VM Advection 🗶	
monotone_scheme monotone scheme for (theta, moisture, winds, density and tracers)	11001 <>
high_order_scheme high order schemes for (theta, moisture, wind,	87117<>
density and tracers)	Help for namelist:run_sl=high_order_scheme
vith range of prolation schemes	High order schemes: 0-Linear interpolation - no high order scheme 1-Cubic Lagrange interpolation 2-Quintic Lagrange interpolation 5-Bi-cubic Lagrange interpolation in the horizontal, linear interpolation in the vertical 7-cubic Lagrange interpolation in the horizontal, quintic in the vertical 8-LOCH: bi-cubic Lagrange in the horizontal; C1-Hermite cubic with quad derivative estimates in the vertical 9-HOCH: bi-cubic Lagrange in the horizontal; C1-Hermite cubic with quad

Iratic

tic

Close 📡

inte

Met Office Rose: $vn \ge 10.6$

... and new options for monotonicity

M Advection 🗶		
monotone_scheme monotone scheme for (thet density and tracers)	ta, moisture, winds,	>
this and a school	Help for namelist:run_sl=monotone_scheme	×
<pre>high_order_scheme high order schemes for (the density and tracers)</pre>	monotone schemes: 0-No monotone scheme 1-Tri-linear Lagrange interpolation 3-Use PMF scheme 4-Use SPMF scheme (SPMF a stringent and more diffusive PM	4F)
	Close 🕽	«

$\underset{Met Office}{\ref{eq:MetOffice}} Conservation options in Rose:$

Tracer conservation now has the option to use the Priestley (1993) algorithm:

