Model Evaluation



The challenge: We want to understand how
and why the atmosphere works.

The problem: The atmosphere is hideously
complex.

The solutions: We can observe it in its natural
state (field observations), we can test
behavior under controlled situations
(laboratory studies) or we can develop
mathematical representations and model it.



Iteratively improve model

Define the question of
interest.

Develop simplified

mathematical

representation of

processes to be
solved.

Determine metrics and
diagnostics to evaluate
model against
observations with .

L Use model to e.g.

make predictions.




But how do we know if our model is
right for the right reasons?

If you Google this question this is,
apparently, the answer:



But how do we know if our model is
right for the right reasons?

We evaluate our model against other models (model
intercomparisons or beauty contests), reanalyses and
observations.

We may want to evaluate lots of aspects of our model
simulation, but generally we will look at model bias and
correlation as two key measures (metrics).

Increasingly, we must also look not only at the model

predictions but also dig into the processes (process-
based model evaluation).



Model evaluation can mean many
things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model calibration — where we identify how to refine
parameters/inputs into our model through comparison
of model output with observations/model data.

This can be manual (i.e. one at a time “tuning’) or
automated (i.e. using stochastic procedures)



Model evaluation can mean many
things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model verification — where we quantify the predictive
capability of our model. Again we compare the model
and observations but this is different to calibration as
we will not be using the results of these comparisons to
modify the model logic/parameters.

For simple models (and for code) verification may include
checking the logic of the model. This is increasingly difficult
for the complex models we use like UKCA.



Model evaluation can mean many
things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model verification — where we quantify the predictive
capability of our model. Again we compare the model
and observations but this is different to calibration as
we will not be using the results of these comparisons to
modify the model logic/parameters.

It is vital that the observational data used in model
verification is distinct from the data used in calibration. NB
this is not always the case or even possible.



Model evaluation can mean many
things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model validation — all models are wrong, some models
are useful. Not to get too bogged down by philosophical
argument but from a technical perspective, a valid model
is one in which the scientific or conceptual output is
acceptable for its purpose.

For those wanting to think more meta: Can you ever
validate a model?



Model evaluation can mean many
things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Sensitivity analysis — where the response of the model
to changes in inputs/parameters is quantified. This
understanding is important for:

1) The range of suitability of the model

2) ldentifying “key” parameters/inputs

3) Understanding behavior at critical points

We will touch on perturbed parameter ensembles (PPEs — a
type of sensitivity analysis) later.



Model evaluation can mean many
things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model calibration

Model verification

Model validataion

Sensitivity analysis

And it requires some objective measures of “goodness of fit”



How can | tell if my model is good or
bad?

First, don't forget to focus on what you are comparing!
Integral quantities? Hourly/high time frequency data? Other
model data? What are the biases in the observational data?
How are the characterized?

There are many, many, many, statistical measures that we
can use and software like R and Python make it easy to

abuse them.



Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
o = standard deviation

I. Mean Bias, Mean Error, and Root Mean Square Error (ppb)

Mean Bias = 12
-y (M- 0)
n-

n

n
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Mean Error= — Z ‘ M — 0‘ Root Mean Square Error = Zl: (M - 0)
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Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
o = standard deviation

Il. Normalized Mean Bias and Error (unitless)
Normalized Mean Bias =
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Air Quality Model Performance Metric Definitions

Common Variables:

M = predicted concentration

O = observed concentration

X = predicted or observed concentration
o = standard deviation

Ill. Fractional Bias and Error (unitless)

Fractional Bias =

n
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Fractional Error =
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Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
o = standard deviation

IV. Correlation Coefficient (unitless)

Correlation =
P e VI. Coefficient of Variation (unitless)
n
1 Z O_ 0 - M - M Coefficient of Variation =
O
(n-1)% o o
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Air Quality Model Performance Metric Definitions

Common Variables:

M = predicted concentration . o |
O = observed concentration V. Coefficient of Variation (unitless)

: : fficient of Variation =
X = predicted or observed concentration Coefficient of Variatio

S O
o = standard deviation

X

IV. Correlation Coefficient (unitless)
Correlation =

VI. Index of Agreement (unitless)
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Error:

Mean Absolute Error

IS a straightforward measure of how far away our model
simulation (y) was from our observations (x) on average. It
takes the modulus of the absolute error (bias) and so is

always positive.



Error:

Mean Squared Error

IS measure of both the bias and the variance of the model.
The variance is the expectation of the squared deviation of a
random variable from its mean. It measures the spread from

the average.



New approaches to evaluation:

The MSE is the squared difference of the modelled (mod)
and observed (obs) values:

nt 2
" (mod; — obs;
MSE = E (mod-obs)? = 2.i=1(mod; — obs) : (1)
ng

where E(-) denotes expectation and n; is the length of the
time series. The bias 1s

bias = E (mod-obs) (2)
i.e. bias = mod — obs. Thus, the following relationship holds:
MSE = var (mod-obs) + bias?, 3)

which is a well-known property of the MSE, (var(-) is the
variance operator). By using the property of the variance for
correlated fields:

var (mod-obs) = var (mod) + var (obs) — 2cov(mod,obs),  (4)

the final formulation for the MSE components reads as fol-
lows:

MSE = bias® + var (mod) + var(obs) — 2cov(mod,obs), (5)

Atmos. Chem. Phys., 16, 6263—6283, 2016

where the covariance term (last term on the right-hand side
of Eq. 5) accounts for the degree of correlation between the
modelled and observed time series. When the covariance
term is zero, var(obs) is referred to as the incompressible
part of the error and represents the lowest limit that the
MSE of the model can achieve. When dealing with model
evaluation, the modelled and observed time series are
typically highly correlated and therefore, within the limits
of the perfect match (correlation coefficient of unity),
cov(mod,obs) = cov(obs,obs) = cov(mod,mod) = var(mod)
= var(obs) and the MSE can be reduced to only the bias
term. That implies that the development of a high-quality
model needs to ensure

a. the highest possible precision in order to maximise the
cov(mod, obs) term;

b. the highest possible accuracy, in order to minimise the
bias.

Elaborating on Eq. (5), Theil (1961) derived the following:

MSE =(mod — 0bs)? + (Ginod — Tobs)”
+ 2(1 — r)UmodUobs~ (6)

www.atmos-chem-phys.net/16/6263/2016/



New approaches to evaluation:

Spectral decomposition of modelled and observed
time Series Period / yr Period / yr
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Spectral decomposition
is not new and is widely
used in other fields of
physical science but has
been used less in
evaluating composition.
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New approaches to evaluation:

Spectral decomposition of modelled and observed

time series

Spectral decomposition
is not new and is widely
used in other fields of
physical science but has
been used less in
evaluating composition.

O3 =LT(03) +SY(O3) + DU(O3) +

(03)



New approaches to evaluation:

Spectral decomposition of modelled and observed
time series

O3 =LT(03) +SY(03) + DU(O3) +1ID(0O3)




New approaches to evaluation:

www.atmos-chem-phys.net/16/8295/2016/ Atmos. Chem. Phys., 16, 8295-8308, 2016



New approaches to evaluation:

www.atmos-chem-phys.net/16/8295/2016/



New approaches to evaluation:

Atmos. Chem. Phys., 17, 3001-3054, 2017 Atmospheric
www.atmos-chem-phys.net/17/3001/2017/ :

doi:10.5194/acp-17-3001-2017 Chemls.try
© Author(s) 2017. CC Attribution 3.0 License. and Physics

Evaluation and error apportionment of an ensemble of atmospheric
chemistry transport modeling systems: multivariable
temporal and spatial breakdown

Efisio Solazzo', Roberto Bianconi’, Christian Hogrefe?, Gabriele Curci*>, Paolo Tuccella’, Ummugulsum Alyuz®,
, Jesper H. Christensen'?,

Alessandra Balzarini’, Rocio Baré®, Roberto Bellasio?, Johannes Bieser’, Jgrgen Brandt!?

Augistin Colette!!, Xavier Francis'?, Andrea Fraser!3, Marta Garcia Vivanco''-'%, Pedro Jiménez-Guerrero®,
Ulas Im'?, Astrid Manders'>, Uarporn Nopmongcol'°, Nutthida Kitwiroon!’, Guido Pirovano’, Luca Pozzoli®!,
Marje Prank'8, Ranjeet S. Sokhi'?, Alper Unal®, Greg Yarwood'®, and Stefano Galmarini'



New approaches to evaluation: CO



New approaches to evaluation: NO,,



New approaches to evaluation: A

success?

Although remarkable progress has been made since the first
phase of AQMEII, both in terms of model performance and
in terms of developing a more versatile and robust evalu-
ation procedure, results of AQ model evaluation and inter-
comparison remain generic since they fail to associate errors
with processes, or at least to narrow down the list of pro-
cesses responsible for model error. AQ models are meant to
be applicable to a variety of geographic (and topographic)
scenarios under almost any type of weather, season, and
emission conditions. For such a wide range of conditions the
inherent nonlinearity among processes is difficult to disen-
tangle, and specifically designed sensitivity runs seems to
be the only viable alternative. A model evaluation strategy
relying solely on the comparison of modeled vs. observed
time series would never be able to quantify exactly the er-
ror induced by biogenic emissions, vertical emission profiles,

www.atmos-chem-phys.net/17/3001/2017/

or their dependence on temperature, deposition, and vertical
mixing, for example, and the analyses presented in this work
are no exception. In fact, the methodology devised to carry
out the evaluation activity in this study has not succeeded in
determining the actual causes of model error, although it does
provide much clearer indications of the processes responsible
for the error with respect to conventional operational model
evaluation.

Atmos. Chem. Phys., 17, 3001-3054, 2017



Comparing models and reality?

One of these images shows a Turner nominated art piece, which sold for £150,000.



Perturbed parameter ensembles

Atmos. Chem. Phys., 15, 11501-11512, 2015 Atmospheric
www.atmos-chem-phys.net/15/11501/2015/ :

doi:10.5194/acp-15-11501-2015 Chemls.try
© Author(s) 2015. CC Attribution 3.0 License. and PhySICS

A perturbed parameter model ensemble to investigate Mt.
Pinatubo’s 1991 initial sulfur mass emission

J.-X. Sheng'?, D. K. Weisenstein?, B.-P. Luo!, E. Rozanov'>, F. Arfeuille*, and T. Peter!

Hnstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

2School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA
3Physikalisch-Meteorologisches Observatorium Davos and World Radiation Center, Davos, Switzerland
“Oeschger Centre for Climate Change Research and Institute of Geography, University of Bern, Bern, Switzerland
2now at: School of Engineering and Applied Science, Harvard University, Cambridge, MA, USA

bnow at: Empa, Swiss Federal Laboratories for Materials Testing and Research, Diibendorf, Switzerland
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Perturbed parameter ensembles

Atmos. Chem. Phys., 11, 12253-12273, 2011

www.atmos-chem-phys.net/11/12253/2011/ AtmOSpl'.lerIC
doi:10.5194/acp-11-12253-2011 Chemistry
© Author(s) 2011. CC Attribution 3.0 License. and Physics

Emulation of a complex global aerosol model to quantify
sensitivity to uncertain parameters

L. A. Lee, K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V. Spracklen

Institute for Climate and Atmospheric Science, University of Leeds, UK

Received: 7 July 2011 — Published in Atmos. Chem. Phys. Discuss.: 19 July 2011
Revised: 11 November 2011 — Accepted: 16 November 2011 — Published: 8 December 2011



2. Screen out
parameters if too
many.

Not in this study

1. Choose mode
parameters for
study.
Section 3.2

v

3. Elicit
parameter
uncertainties
from experts.
Not in this study

v

4. Design the
experiment,
including
validation.
Section 2.3 and 2.4

v

5. Run
computer
model, including
validation runs.

v

6.Collect model
output for
emulation.
Section 3.2

v

7. Run emulator
using design and
model output.
Section 2.2

v

8. Validate the
emulator
comparing
emulator
prediction and
model outputs.
Section 4.1

Validated emulator

!

8a. Revise
design to
improve
emulator
predictive
capability.
Not in this study

A

T 2 Emulatér not valid

9. Collect
emulator
results.

Section 4.2

10. Quantify
variance and
parameter
sensitivities.
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Everything should be made as simple as
possible, but not simpler. Albert Einstein

Einstein clearly

never used
STASH



Practical steps:
How to “play with model data”

By now you have probably (hopefully) worked out where to
find the results of your UKCA runs. Sorry about the file

structure!

There are lots and lots of runs that are available for analysis
and that have been archived on the Met Office MASS
archive. To get access you will need an account but you can
get access from MONSooN or JASMIN.



Practical steps:
How to “play with model data”

You will then need to make use of moo
moo Is —I :crum/xgywn

Will list all the archived model data from the (old) UKCA run
Xxgywn.

You will then be able to extract and save data (as PP files).
See here for more details:

http://cms.ncas.ac.uk/wiki/UM/GettinglnitialData



http://cms.ncas.ac.uk/wiki/UM/GettingInitialData

Practical steps:
How to “play with model data”

Xconv is very handy!
Especially because you

can use it to convert PP to
netCDF!



Practical steps:
How to “play with model data”



Practical steps:
How to “play with model data”



Practical steps:
How to evaluate your UKCA
runs















Tropical Mean Age Profile Midlatitude Mean Age Profile

Comparison of the age

of air against satellite
SF, data
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Comparison of temperature and
humidity against ECMWF reanalysis
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Comparison of total ozone column
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Ozone (ppbv)
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Comparison of tropospheric ozone and

budget
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Min = 3.23 Mean = 29.4 Max = 52.8 Burden (Tg) = 353

'60

50

Latitude (degrees)

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month
Japan stations (24-45N), (123,145E)
] 20
= JPN (2005)
. o Xgywn i g 10 —
Q.
=
[ O T e R R e e -
c
: [ [ |
o]
< =10
— T T T T T T T T T 117 27T T T T T T T T T T
Jan Mar May Jul Sep Nov Jan Mar May Jul Sep Nov

Altitude (km)

20
|

15

10

MIPs have quantified the tropospheric ozone
budget and we can evaluate our model against

these.
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Towards process based model
evaluation

Given the huge number of diagnostics its getting harder and
harder to evaluate models and determine their validity and
there iIs a movement towards process based evaluation. This
requires evaluation of the processes or
diagnostics/prognostics in the model that contribute to the
e.g. tracer. Once these are identified it is common to
compare to obs and grade using the following:

l | tmodel — Mobs|
3 Oobs

g =1



Name

Description

Mean climate

tmp_nh 60-90° N December—January—February temperatures at 50 hPa

tmp_sh 60-90° S September—October—November temperatures at 50 hPa

umx_nh Maximum Northern Hemisphere eastward wind in December—January—February at 10 hPa

umx_sh Maximum Southern Hemisphere eastward wind in June—July—August at 10 hPa

up_70 Tropical upwelling mass flux at 70 hPa

up_10 Tropical upwelling mass flux at 10 hPa

PW_nh Slope of the regression of the February and March 50 hPa temperatures 60-90° N on the 100 hPa January and February
heat flux 40-80° N

PW_sh Slope of the regression of the August and September 50 hPa temperatures 60—90° S on the 100 hPa July and August
heat flux 40-80° N

Variability

fev_nh Amplitude of the leading mode of variability (EOF) of the 50 hPa zonal-mean zonal wind for the Northern Hemisphere,
poleward of 45° (EOFs are scaled to have the same standard deviation as the original data)

fev_sh Amplitude of the leading mode of variability (EOF) of the 50 hPa zonal-mean zonal wind for the Southern Hemisphere,
poleward of 45° (EOFs are scaled to have the same standard deviation as the original data)

tann Amplitude of the annual cycle at 2 hPa in the zonal-mean zonal wind, 10° S—10° N

SAO Amplitude of the semi-annual oscillation at 1 hPa in the zonal-mean zonal wind, 10° S—10° N

QBO Amplitude of the quasi-biennial oscillation at 20 hPa in the zonal-mean zonal wind, 10° S-10° N

SSW Frequency per year of major sudden stratospheric warmings, defined using reversal of the zonal-mean zonal wind at

10 hPa, 60° N




|
Geosci. Model Dev., 10, 1209-1232, 2017
www.geosci-model-dev.net/10/1209/2017/
doi:10.5194/gmd-10-1209-2017
© Author(s) 2017. CC Attribution 3.0 License.

The Met Office HadGEM3-ES chemistry—climate model: evaluation

1 2 3 4 5 6 7 of stratospheric dynamics and its impact on ozone
tmp_nh
tmp_sh
umx_nh =
umx_sh Jz>
0 . .
up_70 — Table 1. Model simulations.
<
up_10 >
— Name Time Coupled Nudging Smoothing?
PW_nh m period ocean?  time-
P W_S h scale
fev nh REF-C1 1960-2010 No N/A N/A
- REF-C2 1960-2100  Yes N/A N/A
fev_sh < REF-C1SD-24h 1980-2010  No 24h No
= REF-C1SD-48 h 1980-2010  No 48h No
tann = REF-C1SD-24 h, 1980-2010  No 24h Yes
sao oy smoothed
- REF-C1SD-48h, 1980-2010 No 48h Yes
gbo , j smoothed
SSW CCMVal-2 1960-2005 No N/A N/A
(UMUKCA-METO)

CCMVal-2 REF-C1 REF-C2 REF-C1SD_24smth REF-C1SD_48smth REF-C1SD_24 REF-C1SD_48

| | l I I N B —————
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