

Proposed Application Program Interface Design for UKCA

John Hemmings, March 2019, v4

with thanks to Luke Abraham for code owner review

Contents

1. Introduction ... 1

2. General Design Principles ... 2

3. Elements of the UKCA Interface .. 4

3.1 UKCA Input and Output Data ... 4

3.2 Parent-specific Subroutines Required by UKCA .. 5

3.3 Specific Design Aspects.. 6

3.4 Provisional UKCA API Subroutines .. 10

4. Implementation ... 14

4.1 Moving D1 Access and STASH Handling out of UKCA ... 16

4.2 Handling Tracers ... 17

4.3 Handling STASH Requests and Diagnostics ... 19

4.4 Moving Input from External Files out of UKCA Time Step Subroutine 21

4.5 Error Handling .. 22

4.6 Replacing Internal UM Subroutine Calls ... 22

4.7 Giving Parent Control of Workspace Persistence .. 23

4.8 Handling Configuration Data .. 23

4.9 Test Harness for Testing Non-UM Functionality ... 23

Appendix: Provisional UM Tickets for Initial Standalone Code ... 25

1

1. Introduction

UKCA is currently an integral part of the Unified Model, making use of many UM-specific

procedures internally and communicating with other parts of the UM via a large number of

shared modules. In preparation for its use in LFRic, it is to be re-packaged as a standalone

code with a well-defined API and will subsequently be moved to its own repository. This will

also allow it to be coupled with other models or applications. A prospective parent

application may be an atmospheric model (3-D or single column), a test harness or some

other testbed system for model analysis.

The API implementation will preserve UM compatibility and the present functionality of

UKCA within the UM rather than produce a divergent code base. This is necessary to ensure

that future code improvements can benefit UM and non-UM applications alike. This

document presents the proposed API design for UKCA and an implementation plan for

refactoring UKCA as a standalone sub-model within the UM using this API.

RADAER is called separately from UKCA, by the UM’s radiation processing, but is

dependent on GLOMAP-mode data from UKCA (obtained via the UM’s D1 array). Like

UKCA, it will need to be ported to LFRic and it would ideally be available in other parent

applications too, alongside UKCA, for studying the direct radiative effects of UKCA’s aerosol

fields. UKCA is not currently dependent on RADAER though and the work to separate it from

the UM is outside the scope of this document. It is envisaged that RADAER will have a

separate API for interfacing with a parent model but here it is effectively treated as an

integral part of the UM. Like the rest of the UM, it will be modified to communicate with

UKCA through the UKCA API.

The GLOMAP-mode climatology scheme, GLOMAP_CLIM, comprises other UKCA-related

code that will need to be ported to LFRic. This code is dependent on both UKCA and

RADAER. However, UKCA has no dependencies on GLOMAP_CLIM and the separation of

GLOMAP_CLIM from the UM is also considered out-of-scope in this document. As with

RADAER, the UKCA API design will support GLOMAP_CLIM’s use of UKCA.

A set of general design principles to be followed is given in Section 2. Section 3 outlines

design considerations specific to UKCA and Section 4 gives an outline of the refactoring

work required to implement the new API within the UM.

2

2. General Design Principles

 UKCA will be available to a parent application via a single API module as a minimal

set of top-level subroutines. These will include subroutines to perform functions

including setting up the UKCA configuration prior to a model run, executing a UKCA

time step and doing housekeeping at the end of the model run. A number of other

top-level subroutines will provide additional functionality. The API may also include

fixed UKCA parameters.

 Names of all subroutines and parameters presented via the API will start with ukca_

to avoid polluting the parent’s namespace.

 All run-time communication between the parent model and UKCA will be via

argument lists.

 Where UKCA is required to perform processing that is parent model-specific, the

processing will be encapsulated in a generic internal subroutine that will reference a

parent model subroutine, or handler, conforming to a UKCA specification. The

handler will be passed to UKCA via a top-level subroutine call. The alternative of

providing parent versions of specific subroutines at compile-time will be supported by

ensuring that each generic internal subroutine has its own module that could

potentially be replaced in the build process.

 It must be possible to run UKCA for a given period without doing any file IO during

the run. This will be particularly important for future UKCA parameter

perturbation/optimization experiments where a large number of integrations will be

required with almost identical input data. For such experiments, the domain and/or

time period are typically restricted compared with production cases and it is most

efficient to keep all required input data in memory (managed by the parent

application) between runs.

 Any IO performed within UKCA subroutines will be under the control of the parent

model. Where this IO occurs in an internal UKCA subroutine, the parent will pass

control data and/or a handler routine to UKCA via an appropriate top-level

subroutine. Other IO will be handled by top-level UKCA subroutines that perform

specific input or output tasks (e.g. reading emissions data from a NetCDF file). Such

subroutines should not perform other processing so could be replaced by substitute

calls in the parent model (or suppressed) without side effects. This will allow flexibility

for the parent model to get input data from different sources or at different intervals or

handle output data differently.

 All UKCA state variables (tracers and non-transported prognostics) will be available

to the parent model between time steps, as native FORTRAN arrays, for inspection

and possible modification. The fields in these arrays, and those in any diagnostics

arrays, will be in an order specified by UKCA independently of a particular parent

application. Within the arrays, specific fields and their positions may differ between

different UKCA configurations. The actual lists of fields will be determined by field

names retrieved by the parent from UKCA at run time.

 The state variables will be passed to UKCA via the main time step subroutine. Other

input data (physical environment, emissions, etc.) will instead be initialised/updated

within UKCA via separate top-level subroutine calls and optionally allowed to persist

between time steps until the next update (as emissions do at present). This will

3

reduce overheads in cases where UKCA is run in a fixed environment. It should also

help to avoid excessively long argument lists.

 The subroutine for executing a UKCA time step will only process fields specified on

the UKCA model grid (which is configurable by the parent). Any interpolation to this

grid that may be required will be handled by other top-level subroutines. This will help

to support efficient memory management where multiple instances of the model grid

are distributed over processing elements in a parallel environment.

 UKCA input fields will be expected to span the relevant dimensions of UKCA’s spatial

domain (as defined in the current configuration) but may extend beyond this (e.g. to

allow for halos used by the parent). To allow for parent applications running UKCA in

a 1-D or 0-D context, the relevant top-level subroutine arguments will be overloaded

to allow use of actual arguments with appropriate dimensions.

 It must be possible to run UKCA without internal persistence of fields between time

steps (as required for LFRic). Whether or not persistence is supported internally will

therefore be under the control of the parent via UKCA’s configuration settings. Any

persistence of fields that is required must be provided for by top-level subroutines to

pass the data to and from the parent in the event that internal persistence is disabled.

 Whether or not temporary workspace used by UKCA is released between UKCA time

steps will likewise be under the control of the parent model via UKCA’s configuration

settings

 The housekeeping subroutine, to be called by the parent in cases where multiple

runs are supported, must ensure that all allocatable internal storage is released and

any configuration or status information is cleared ready for the next run.

 On encountering a fatal error condition, UKCA will return control to the parent model

with an appropriate UKCA-specific error code and message and the name of the

routine where the error was trapped. This will allow the parent model to either abort

or continue without UKCA as required. Warning conditions will provide the same

information to a generic internal subroutine that calls a parent model subroutine if

one is provided. Any output messages will be under the control of the parent model

via this handler routine.

 The API should allow input data to be validated before starting a model run, at least

to the extent that this is practical. This will be helpful when a parent application needs

to run large ensembles with varying input data because it will allow the parent to

perform input data checks for all ensemble members and trap errors early on before

initiating any of the runs.

4

3. Elements of the UKCA Interface

This section describes the elements of UKCA that must be supported by the new API (i.e. all

data currently transferred between the UM and UKCA and all UM procedures currently

called from within UKCA). It then describes some specific aspects of the API design and

gives a provisional list of subroutines for its implementation. For the purposes of considering

UKCA as a distinct entity within the UM, it will be defined by its core functionality as provided

by the initialisation subroutine ukca_init, the time_step subroutine ukca_main1 and the

plume scavenging subroutine ukca_plume_scav embedded in the UM convection code.

3.1 UKCA Input and Output Data

The different categories of input and output data associated with UKCA are listed here with

their sources/destinations, in the UM context, given in parentheses.

Input Only Data:

 Parameters, options and other configuration data (from run_ukca namelist)

 Domain configuration data: field dimensions etc (from parent)

 Environment: atmospheric physics and land surface, CLASSIC aerosols for

heterogeneous chemistry (from D1 array)

 Emissions (from NetCDF files)

 Offline oxidants (from NetCDF files)

 Climatologies and other reference data including AeroClim climatology, data for Fast-

JX photolysis and 2-D photolysis, Cambridge 2-D model data and ozone ancillary

data for top boundary conditions and RCP scenario data for lower boundary

conditions of long-lived gases (from sequential files)

 Concentrations of long-lived gases from radiation scheme (from parent via

ukca_set_trace_gas_mixratio).

 Requests for diagnostics (from STASH system data)

Input/Output Data (model state):

 Tracers (from parent via ukca_main1 argument list)

 Non-transported prognostics (from D1 array)

Output Only Data:

 Diagnostics (to STASH system)

 Log output and error messages (to files)

 Test output optionally produced when lower BCs for long-lived gases are read (to file)

5

3.2 Parent-specific Subroutines Required by UKCA

At present, the following UM-specific subroutines (listed here according to their general

function) are called from within UKCA.

 NetCDF access (subroutines in emiss_io_mod)

 Sequential file access (ukca_2d_bc_read_interp, ukca_read_aerosol,

ukca_read_reff, ukca_scenario_rcp, read2d_opt and read subroutines in

module fastjx_specs)

 Boundary layer mixing and addition of emissions to model levels (tr_mix, trsrce)

 Vertical integration of mass in UKCA for plume scavenging diagnostics, using an

ENDGAME-specific scheme (ukca_eg_tracers_total_mass_fix)

 Time interpolation of emissions/offline oxidants (t_int)

 Print management for output to log file (umprint)

 Warning handling (ereport)

 Dr Hook timer calls (dr_hook)1

In many cases, the UM-specific subroutines are required because of the specifics of IO

handling in the MPI parallel environment (i.e. reading on PE0 and broadcasting to other

PEs). Sequential file access additionally involves calls to the UM file manager

(assign_file_unit and release_file_unit). In other cases, the requirement is for

compatibility with the UM’s numerical schemes. Some of the subroutines include significant

amounts of non-UM specific processing that can be separated out.

The reading of data from NetCDF and sequential files in ukca_main1 will be moved out of

that subroutine. This will give the parent maximum flexibility to control how these data are

provided and ensure that file access during the run can be avoided if necessary. Where the

reading of data does not involve a significant amount of UKCA-specific processing, it can be

left to the parent to do the file access and pass the fields to UKCA subsequently. However,

any non-trivial UKCA-specific processing involved in reading data should remain the

responsibility of UKCA. Such processing should be supported by new UKCA top-level

subroutines for use by any parent application.

UM-specific subroutine calls still in ukca_main1 or in other UKCA subroutines (including the

new top-level subroutines) will require replacement by more generic calls. These will allow

indirect access to UM subroutines when used in the UM or to substitutes when used with a

different parent.

Note 1: Dr Hook is a candidate for migration to the SHUMlib library which would make it available to non-UM

applications and may therefore not need replacement. (See

https://code.metoffice.gov.uk/trac/um/wiki/ProjectDocumentation/SharedFFLibrary/CandidatesForMigration)

https://code.metoffice.gov.uk/trac/um/wiki/ProjectDocumentation/SharedFFLibrary/CandidatesForMigration

6

3.3 Specific Design Aspects

Configuration Data and FAST-JX Specifications

In the UM, UKCA configuration data are read in from a namelist which is updated via the

Rose GUI. This functionality is UM-specific and will remain the responsibility of the parent.

This means that UKCA will obtain its configuration data via a subroutine call rather than from

a namelist. Different UKCA configurations require different subsets of configuration variables

so the values of individual variables will be specified by optional arguments to avoid

unnecessarily long argument lists. In future developments, the set of configuration variables

used in the standalone code may change independently of a particular parent as new

functionality is added. Use of keyword arguments in the subroutine call will avoid backward

compatibility issues arising from the re-arrangement or addition of variables. Removal of

variables should only be considered at major version changes. The API documentation

should indicate that positional argument association is not supported and will produce

undefined results.

In addition to the user-defined configuration data, UKCA requires a set of specification data

for the FAST-JX photolysis scheme. In the UM, these data are read from sequential files at

the first time step, using subroutines in module fastjx_specs. The details of the data set

are specific to the FAST-JX scheme (part of UKCA) and are not configurable via the GUI, so

the file access will be the responsibility of UKCA. However, the existing subroutines are UM-

specific because they read the data on PE0 and broadcast them to the other PEs. To

support this (or similar requirements for parent handling of the data), the API must provide

subroutines that allow the data set to be passed to the parent and back to UKCA, although

the parent should not need to know the details of the data. The file access will be moved out

of ukca_main1 as indicated in Section 3.2.

Tracers and Non-transported Prognostics

At present, the UKCA species in the tracer array passed to ukca_main1 are determined

with reference to the STASH system. Their order corresponds to the order of these fields in

the UM STASH master file, with the actual indexing determined by which fields are active. It

is not possible to preserve this relationship in a standalone code: it must be possible to

modify the UKCA tracer list in future UKCA development work without reference to a

particular parent model.

In the new UKCA code, the tracer species and their order will instead be determined directly

by UKCA. The parent will then retrieve an arbitrary list of field names from UKCA prior to

initiating a run and must provide an array of tracer field values matching this list. The same

process will be followed for non-transported prognostics. In both cases, the specific fields

and their positions may differ between different UKCA configurations.

A complication arises with UKCA’s plume scavenging functionality that is integrated with UM

convection to improve the accuracy of aerosol removal fluxes. It involves UKCA-specific

processing outside the main UKCA time step that accesses the UM-specific tracer array.

7

The way this is done needs to be made more generic so that plume scavenging can be used

in other parent models.

Environment Data

Environment data refers to input fields, other than the tracers and non-transported

prognostics, that are provided on the model grid. These data may come from a variety of

different sources and different fields might need to be updated at different times in some

applications (or not updated at all). The fields can also have different dimensionality and

extents. For these reasons, the API will not attempt to handle the environment data as a

single array of fields but will instead allow each field to be set separately by name.

For flexibility, environment data will be set by calling a new top-level subroutine instead of

being set in the call to ukca_main1 and each call will set a single named field. In

applications where some or all environment data are fixed, the fixed fields can then be set at

the beginning of a run and need not be updated. This means that ukca_main1 will need

extra validation that ensures all required environment fields are set. UKCA should be able to

provide the parent with a list of required fields by name on request. However, it should not

fail to run if additional fields are set.

Scalar concentrations of long-lived gases can be treated as a special case of environment

data and would be updatable by name in the same way. A subroutine, equivalent to

ukca_set_trace_gas_mixratio, that treats these as a collection of environment

variables, with default values, should also be provided in the API as an alternative.

Reference Data Sets

Reference data, as referred to here, are distinct from environment data because they are

defined on an arbitrary geographic grid, or sometimes throughout the model domain, and

generally contain instances associated with multiple times. In accordance with Section 2,

reference data defined on an arbitrary grid will not be processed directly by ukca_main1.

They will instead be converted to fields on the model grid and interpolated to the current time

externally to ukca_main1. The functionality for accessing these data from reference data

sets will not be required for all applications. (Some may instead require them to be provided

by the parent as environment variables on the model grid.) However, it is likely to be useful

for some non-UM applications, so ideally should be supported by the API rather than leaving

the code as part of the UM.

Reference data that may be required, depending on the configuration, include top boundary

condition data (currently read in ukca_2d_bc_read_interp) and aerosol climatology data

(currently read in ukca_read_aerosol and ukca_read_reff) and yearly time series for

long-lived gases read from an RCP data file (currently read in ukca_scenario_rcp).

These data can be treated as environment data once the necessary interpolation has been

done. The top-level subroutines that do the interpolation will just be alternatives to those for

setting environment data. That is, they will give the same outputs but have different input

data.

In the UM, each of these reference data sets are read by routines that perform a UM-specific

read on the first time step and process it in a UM-independent way on subsequent time

steps. The read functionality is specific to the file format rather than to UKCA and is relatively

8

trivial, so need not be included in the standalone UKCA code base. The read step will

therefore be separated from the subsequent processing and become the responsibility of the

parent. For the long-lived gases, there is an option to write test output to a file after reading

data from an RCP file. This functionality will remain the responsibility of the UM for now but

could be implemented in UKCA at a later date if needed in other applications.

If the 2-D photolysis scheme is selected, reference data will also be required for species

photolysis rates. Again, these data are read only on the first time step. However, the saved

data are interpolated in time daily, with only the data for the current day being broadcast

across the different PEs (the broadcast step being UM-specific). This is desirable because of

the relatively large size of the complete data set. To replicate this functionality requires a

slightly more complicated division of responsibility than for the other reference data. Ideally,

UKCA should have the responsibility for knowing when to update and would do the time

interpolation but should allow the option of calling procedures provided by the parent to

support the distribution of the data in a parallel environment. When prioritizing this work, it

should be noted that the 2-D photolysis scheme is only used for testing and debugging now,

having been succeeded operationally by FAST-JX. It is unclear at present whether it will be

needed in non-UM applications.

A disadvantage of the present schemes is that they rely on the whole data set (or, in the

case of the 2-D photolysis, its whole spatial extent) being held on each PE. This does

impose an unnecessary memory overhead that is likely to be unsuitable for LFRic. LFRic

might instead provide the data to UKCA as environment data on the model grid at each time

step. In that case, additional top-level subroutines could be provided in the API at a later

date to support UKCA-specific interpolation and return interpolated fields to the parent

instead of updating UKCA directly.

Emissions and Offline Oxidants

In the UM, the emissions of each tracer from various sources are controlled by emissions

data and metadata from a NetCDF data set and the way in which these data are handled is

prescribed within the UKCA time step processing. Oxidant species for the offline oxidants

chemistry scheme are treated similarly. The functionality of this NetCDF-based emissions

system should be preserved for the UM and is generally recommended for non-UM

applications too, but is likely to be restrictive for some. Testbed applications, for example,

would ideally have the option of setting up simple emissions fields without necessarily

reading any external data at all.

To allow flexibility, the extraction of NetCDF data will be moved out of ukca_main1 and

performed by a new top-level UKCA subroutine that will be called separately by the UM and

can be called by other parent models as required. This will involve separating the data

extraction from subsequent state update processing which will remain within ukca_main1.

The new top-level subroutine will need to call parent routines to gain access to UM-specific

low-level IO functions in module emiss_io_mod or alternatives provided by other parent

applications.

In the NetCDF emission system, the frequency at which the internal emissions data are

updated is controlled by metadata in the file for each species and the data are allowed to

persist between time step. Internal persistence of fields between time steps may be

9

disallowed by the parent (e.g. LFRic) as indicated in Section 2. If the NetCDF emission

system is to be useable in this context with the same method of controlling update

frequency, subroutines will be needed for transferring the current emissions data to and from

the parent.

Diagnostics

The parent needs to be able to check availability of diagnostics as determined by the UKCA

configuration data, allowing pre-run validation or filtering of diagnostic requests. It also needs

to pass diagnostic requests to UKCA that may vary between time steps. UKCA will use

these requests to determine which diagnostics are to be included in the output. Diagnostic

output can be 2-D or 3-D (equivalent to 0-D or 1-D in a single column model) so two

separate arrays of diagnostic fields will be used. These will be referred to as ‘flat’ diagnostics

and ‘full height’ diagnostics.

The diagnostic requests will be updated separately from the time step and only diagnostics

with active requests will be output at each time step. When the diagnostics required vary

between time steps it may or may not be desirable for the length and indexing of the

diagnostic output arrays to also vary. Retaining fixed indexing throughout a run may be

convenient but would require space to be allocated in the arrays for all available diagnostics

(possibly a much larger number than those actually used) or for the parent model to be

forced to indicate all diagnostics that will be used in advance. The scheme proposed below

will allow the parent maximum flexibility to control whether, and over what period, the

indexing is fixed or variable.

The parent will set or update diagnostic requests by passing two 1-D arrays of field names,

one for ‘flat’ diagnostics and one for ‘full height’ diagnostics. (Where names of ‘full height’

diagnostics are included in the ‘flat’ diagnostics list they will be taken to indicate surface level

fields). The field name arrays will be accompanied by corresponding arrays of status flags to

indicate whether each request is active. The status flags can be set ‘on’ or ‘off’ by the parent

but will be set ‘off’ by UKCA on return for diagnostics that are unavailable. The output

diagnostic fields will match the lengths and indexing of the field name arrays but only the

fields corresponding to active requests will be valid. (Others should be set to NaN for safety.)

The status flags will be integers rather than logicals. This will allow further codes to be used

during the run to indicate either that an output diagnostic field has indeed been updated

since the last request or that an error has occurred and the field is invalid. Note that all

requests that remain active after UKCA’s availability check against the configuration data

should be valid in theory but the use of an explicit code that is set at the point of update

provides additional confidence.

Field Names

The CF naming convention (http://cfconventions.org/standard-names.html) will be adopted

for the field names to be used by UKCA for prognostic and diagnostic fields. This will avoid

any ambiguity at the interface level and reduce reliance on external documentation at the

expense of a small overhead of processing long character arrays. (Use of parameters for

these names in the code will ensure readability is not compromised.)

10

The use of CF names will be specific to the UKCA interface and need not necessarily match

names used to refer to the same fields elsewhere in a parent model. This is important

because the requirements of parent applications will vary (e.g. the UM identifies fields by

STASH codes and other parents may use short field names for their user interfaces). In

particular, it is unnecessary to consider potential name conflicts with similar fields (e.g. same

quantity from a different source) that a parent may handle outside the context of its

communication with UKCA. Handling such conflicts would be the responsibility of the parent.

3.4 Provisional UKCA API Subroutines

A provisional list of API subroutines is given here. Subroutines used to set up the UKCA

configuration are listed first, followed by subroutines that provide the parent with information

about this configuration. The following subroutines then relate to setting up and updating

diagnostic requests, providing information about these requests, setting or updating

environment and other data required in the UKCA time steps, doing the time step processing

and finally resetting UKCA to its un-initialised state.

A relatively large number of subroutines are to be provided with the aim of allowing the

parent maximum flexibility. This does mean that executing a time step in the UM (and similar

applications) will require multiple subroutine calls but these can easily be encapsulated

within a parent-specific wrapper. If it is felt necessary to be able to hide this complexity from

a parent in future, it would be possible to provide one or more UKCA-specific wrapper

subroutines in the API at a later date to cover typical use cases without compromising

backwards compatibility.

ukca_set_handler

Provides UKCA with a parent-specific subroutine to perform a particular function. The

possible functions are listed in Section 3.2.

ukca_set_fastjx_specs_from_file

Reads the FAST-JX specification data from sequential files. Normally called once at the

beginning of a run.

ukca_get_fastjx_specifications

Returns the FAST-JX specification variables (e.g. for broadcasting to PEs)

ukca_set_fastjx_specifications

Sets the values of the FAST-JX specification variables (e.g. after broadcasting).

ukca_setup

Sets the user configuration variables, checks their validity and sets up everything required to

establish full details of the configuration. This will determine which tracers and NTPs are

used, which diagnostics are available and which emissions data and environmental input

fields are required. Will also set up or copy to UKCA other data that are currently used

11

directly from UM modules and will be fixed for the duration of the UKCA run (e.g. model grid

information). In applications supporting ensemble runs, it may be called multiple times to

validate different sets of input data and provide information to the parent about potential

UKCA runs prior to any being executed.

ukca_setup_mode_sussbcoc_5mode

Performs a limited setup (of a specific GLOMAP_mode configuration) required for using

RADAER and/or GLOMAP climatology scheme. Also called as an internal subroutine within

ukca_setup.

ukca_get_tracer_varlist

Returns the list of field names of active tracers in the current configuration.

ukca_get_ntp_varlist

Returns the list of field names of active non-transported prognostics in the current

configuration.

ukca_get_environment_varlist

Returns the list of field names for environment data required in the current configuration.

ukca_get_config_*

Returns other specific information about the current configuration as indicated by a suffix

replacing *. A small set of subroutines will retrieve various types of information required by a

parent application (e.g. selected configuration options). The set can be added to as needed

to support different parents without compromising backwards compatibility.

ukca_set_flat_diagnostic_requests

Set up a new list of ‘flat’ diagnostic requests and the associated status flags. Includes

availability check for each requested diagnostic.

ukca_set_full_ht_diagnostic_requests

Set up a new list of ‘full height’ diagnostic requests and the associated status flags. Includes

availability check for each requested diagnostic.

ukca_update_flat_diagnostic_requests

Update one or more status flags associated with an existing list of ‘flat’ diagnostic requests.

Includes availability check for any diagnostics to be activated.

ukca_update_full_ht_diagnostic_requests

Update one or more status flags associated with an existing list of ‘full height’ diagnostic

requests. Includes availability check for any diagnostics to be activated.

12

ukca_get_flat_diagnostic_varlist

Returns the current list of diagnostic requests in the form of the list of field names

corresponding to the ‘flat’ diagnostic output array and the associated status flags.

ukca_get_full_ht_diagnostic_varlist

Returns the current list of diagnostic requests in the form of the list of field names

corresponding to the ‘full height’ diagnostic output array and the associated status flags.

ukca_set_environment

Sets or updates a named environmental input field. These are fields on the model grid that

may be varied by the parent during the run. Will typically be called at each time step if that is

the case.

ukca_set_env_from_lat_ht

Sets or updates a named environmental input field by selecting or interpolating from

reference data comprising a time series of 2-D fields on a latitude-height grid. Will typically

be called at each time step.

ukca_set_gas_mixratio

A synonym in the API for ukca_set_trace_gas_mixratio: Sets up or updates mixing

ratios of long-lived gases (primarily trace gases) for use as lower boundary conditions (and

in some cases for the atmosphere as a whole). These are fields that may be varied by the

parent during the run. Will typically be called at each time step if that is the case.

ukca_set_gas_mr_from_tseries

Sets or updates mixing ratios of long-lived gases by interpolating from a reference time

series (e.g. from RCP scenario data). Will typically be called at each time step.

ukca_set_emissions_from_nc

Sets or updates emissions input data using a list of NetCDF data files defined in the current

configuration. May be called at each time step but the actual update frequency is controlled

by metadata in the NetCDF data sets.

ukca_get_emission_fields

Returns the current set of emission fields. Required when the internal persistence of

emission fields between time steps is undesirable and persistence must be handled by the

parent.

ukca_set_emission_fields

Sets the emissions fields by copying in fields obtained using

ukca_get_emission_fields.

13

ukca_set_oxidants_from_nc

Sets or updates oxidants input data (for offline oxidants chemistry scheme) using a NetCDF

data file defined in the current configuration. May be called at each time step but the actual

update frequency is controlled by metadata in the NetCDF data set.

ukca_get_oxidant_fields

Returns the current set of oxidant fields. Required when the internal persistence of emission

fields between time steps is undesirable and persistence must be handled by the parent.

ukca_set_oxidant_fields

Sets the oxidant fields by copying in fields obtained using ukca_get_oxidant_fields.

ukca_set_photol_rates_from_lat_ht

Sets or updates photolysis rates for 2-D photolysis scheme by interpolating from a multi-

species latitude-height time series. These are reference rates for the current day, varying by

latitude, height, time of day and time of year. May be called at each time step but the actual

update frequency (daily) is controlled by UKCA.

ukca_step

Performs one UKCA time step by calling ukca_main1. Will support the option of calling with

reduced dimension arguments for 0-D or 1-D domains and convert to the higher dimension

arrays expected by ukca_main1 if necessary.

ukca_activate

Calculates number concentration of aerosol particles which become activated into cloud

droplets. Required for the GLOMAP climatology scheme but also called as an internal

routine within ukca_step.

ukca_plume_scav

Determines the change in tracer content in a model layer due to scavenging by precipitation.

ukca_reset

Resets UKCA to its un-initialised state to allow another configuration to be setup.

14

4. Implementation

The UKCA code will be refactored within the UM to conform to the new API design while at

the same time maintaining the existing functionality. The refactored code should not change

results and is required to pass all group UKCA rose stem tests. This section aims to identify

the scope of the development work required.

In the refactored code, the present UKCA modules (and any new modules created) will

either become UKCA modules that are independent of the UM or UKCA-specific UM

modules that prepare data for calling UKCA routines, perform the calls and handle UKCA

output. From a UKCA perspective, these UM modules will be UM-specific and will not do any

UKCA processing other than that required for interfacing with the UM. The top-level UKCA

procedures that are required by the UM (or may be required by another parent) will be made

available via USE statements in an API module ukca_api_mod.

All communication between the UM and UKCA modules should eventually be via procedures

accessible via the API module. One-way communication from UKCA to the UM via use of

internal UKCA modules might still be allowed in the short term as it will not prevent the

standalone code from working. However, this is highly undesirable in the longer term

because it makes the UM vulnerable to UKCA changes that do not affect the defined API,

making it impossible to maintain the UKCA code independently.

The UM will continue to use the STASH system for UKCA sections but it should be possible

to add or remove diagnostics, prognostics or complete chemistry schemes in UKCA without

necessarily needing to change UM code (including the STASH master file). UM code could

of course be updated independently to take advantage of new UKCA fields or schemes.

Similarly, it could be updated to remove support for any obsolete fields or schemes, and

ideally should be, but it must at least allow for the fact that the presence of support for UKCA

items in STASH can no longer be considered a robust indicator of their availability. It will be

possible for the FORTRAN code to check availability by enquiring of UKCA directly rather

than using the STASH system (and fail cleanly if a missing item is requested) but this is not

possible with respect to the validation of data in the Rose GUI.

15

The UKCA-specific calls from the UM code that will be affected by the re-factoring are shown

in the tree below (highlighted in bold with the UM calling chains shown), followed by notes

outlining the changes needed to use the new API.

um_shell

readlsta

 read_nml_run_ukca

 ukca_init

stash_proc

 Prelim

 tstmsk

 tstmsk_ukca (for STASH requests)

addres

 primary

 tstmsk

 tstmsk_ukca (for tracers)

ukca_set_nmspec

ukca_set_conv_indices

 u_model_4a

atm_step_4a

 ukca_mode_sussbcoc_5mode (for RADAER runs)

 allocate_ukca_cdnc

 ukca_mode_sussbcoc_5mode (for GLOMAP_CLIM runs)

glomap_clim_arg_act_cdnc

 ukca_activate

 atmos_physics1

 ukca_set_trace_gas_mixratio

 atmos_physics2

 ni_conv_ctl

 tracer_copy

 ukca_plume_scav_initial

 glue_conv_5a OR glue_conv_6a

 misc. convection subroutines

 convec2_4a5a OR convec_6a

 ukca_plume_scav

 tracer_restore

 ukca_plume_scav_final

 ukca_main1

In the revised UM-UKCA interface:

 ukca_init call to become an internal UKCA subroutine and replaced by a call to

ukca_setup. This will copy the user configuration data (obtained by

read_nml_run_ukca) into UKCA, call ukca_init and also initialise tracer and

NTP data. Requires moving some processing from ukca_main1.

 tstmsk_ukca to be replaced by using information on field availability from calls to

ukca_get_tracer_varlist, ukca_get_ntp_varlist and

ukca_set_*_diagnostic_requests (see 4.2 & 4.3 for details).

16

 ukca_set_nmspec & ukca_set_conv_indices to be retained in modified form

as UM subroutines to provide mapping data for plume scavenging (see 4.2 & 4.3).

Should ideally be renamed not to start with ukca_ to clarify that they are not UKCA

subroutines.

 ukca_mode_sussbcoc_5mode to be presented as a UKCA API subroutine for

RADAER and GLOMAP climatology runs.

 ukca_activate to be presented as a UKCA API subroutine for GLOMAP

climatology runs.

 ukca_set_trace_gas_mixratio (alias ukca_set_gas_mixratio) to be

presented as a UKCA API subroutine.

 ukca_plume_scav to be presented as a UKCA API subroutine.

 ukca_main1 to become an internal UKCA subroutine called by ukca_step,

ukca_step will be encapsulated in a UM wrapper with calls to

ukca_set_fastjx_specs_from_file,

ukca_get_fastjx_specifications, ukca_set_fastjx_specifications,

ukca_set_environment, ukca_set_env_from_lat_ht,

ukca_set_gas_mr_from_tseries, ukca_set_emissions_from_nc,

ukca_set_oxidants_from_nc,

ukca_set_photol_rates_from_lat_ht,

ukca_update_*_diagnostic_requests as required to setup data in preparation

for the time step.

Since the UM only performs a single UKCA integration, it should not need to call

ukca_reset to do housekeeping and this subroutine could be a later addition to the API.

The required implementation tasks are outlined in the following subsections. This should

serve as a reference when raising tickets but it is not intended for there to be a 1:1 mapping

between tickets and subsections. Priority will initially be given to work required for a

‘prototype’ standalone code that at least supports the GLOMAP 5-mode setup (MS2) with

offline oxidants running independently of the UM.

4.1 Moving D1 Access and STASH Handling out of UKCA

The UM call to ukca_main1 will be replaced by a call to a UM wrapper subroutine that does

the necessary UM-specific preparation for calling the modified ukca_main1 via the API

subroutine ukca_step. The UM-specific initialisation code related to communications with

D1 can then be moved outside ukca_main1 into the UM wrapper routine, as can the

copying of non-transported prognostics back to D1. Calls to the STASH handling subroutine

stash for processing diagnostics at the end of the time step will also be moved out,

including those for the pressure level diagnostic sections that occur within the internal

ukca_plev_diags subroutine. The whole subroutine can be moved as it is simply a UM

reprocessing of other UKCA diagnostics.

17

Moving D1 access outside ukca_main1 requires other initialisation code in ukca_main1 on

which D1 access is dependent to be moved out too. In general, this is initialisation that may

be needed by any parent model to initiate a UKCA run. In the standalone code, it will be

done in ukca_setup. Some significant re-working of the initialisation code moved out of

ukca_main1 is required to separate data structures and processing into those that are UM-

specific and those that are UM-independent, since only the latter can go into the UKCA

subroutines. The former will become part of the UM module containing the wrapper

subroutine (or UM modules used therein).

The wrapper subroutine will determine which non-transported prognostics are required from

D1 by calling the new subroutine ukca_get_ntp_varlist and converting the field names

returned in the list to STASH codes using a new lookup table. Non-transported prognostics

extracted from D1 will be passed to UKCA via the ukca_step call as a 4-D array holding 3-

D fields corresponding to the field name list.

The remaining data extracted from D1 is environment data that will be passed to UKCA via

calls to ukca_set_environment for each field. Which environment fields are required

should now be determined by calling the new subroutine

ukca_get_environment_varlist instead of by using UKCA configuration data. This will

reduce the amount of configuration data that needs to be made accessible to the parent.

UKCA will need to record the status of each required environment field for validation

purposes (e.g. by maintaining status flags for each field to show whether or not it has been

set). A new configuration setting will determine whether or not UKCA’s internal copies of the

environment fields are deallocated at the end of the time step.

Parent field dimensions may differ from UKCA’s internal field dimensions determined by

model domain information. For example, there may be halos extending the horizontal

dimensions or additional levels in the vertical that are not processed by UKCA (e.g. level 0

required in the UM for ENDGAME). UKCA will not make assumptions about the extent of

any of its input fields but will ensure that the data at least span the required domain and that

only the required extents are handled internally. This will avoid overheads associated with

redundant regions that could potentially be very large.

In cases where reduced dimension fields are used in actual arguments (i.e. in applications

running UKCA in 1-D or 0-D), fields will be copied to the equivalent higher dimensional

arrays that are processed in ukca_main1. Copying between parent fields and internal fields

will be handled by overloading the ukca_step subroutine interface with alternative versions

of the subroutine that call ukca_main1 with appropriately modified fields. Other top-level

subroutines handling parent fields will be implemented likewise.

4.2 Handling Tracers

The UM holds UKCA tracers in the array tracer_ukca that is a pointer to the relevant

section of D1. This is set up within the call to addres in stash_proc to hold the active

tracers by calling tstmsk_ukca for each of the primary fields in Section 34 to determine

18

which are active. (tstmsk_ukca checks the option code associated with an item obtained in

the UM STASH master file against details of the UKCA configuration.)

To use the new API, the UM must instead get the list of active tracer fields from UKCA by

calling ukca_get_tracer_varlist. The way that UKCA determines this list according to

the details of the configuration will be independent of the UM and will be determined within

ukca_setup. The UM will use the list as a basis for setting up the tracer fields in D1 but

must check that each of the fields is supported in the STASH master. This can be done in

the STASH subroutine addres that loops through the items in the STASH sections. Each

item will be checked against the active tracer list and a final check will then ensure that all

active tracers are accounted for at the end. This will make the call to tstmsk_ukca below

addres redundant. The UM will need to provide a lookup table for converting the names of

supported UKCA fields to STASH codes.

Note that similar processing to the above will be required in the reconfiguration code (in the

subroutine rcf_address) to determine which fields are to be included in the output dump.

In the initial implementation of the standalone code, tstmsk_ukca could still be employed

to determine the list of active tracers within the ukca_setup call if a separate association

between field names and option codes is provided by UKCA. This may be the quickest

method to implement. However, replacing it with a more direct method like that currently

used within UKCA for non-transported prognostics would make the code clearer and easier

to maintain.

In the UM, two subroutines ukca_set_nmspec and ukca_set_conv_indices are called

to set up UM-specific information for tracer access that is used within UKCA.

ukca_set_nmspec sets up an array of field names nm_spec that correspond to STASH

Section 34 item numbers and another array of field names nm_spec_active that

corresponds to the UM array tracer_ukca used to hold UKCA-specific tracer fields.

ukca_set_conv_indices sets up the indices of GLOMAP-mode fields in the

tracer_ukca array (in nmr_index_um and mmr_index_um). Use of this UM-specific

information within UKCA should be eliminated in the standalone code where practical but

this may not always be the case (see details of convection processing below and in Section

4.3). Any such information that is required will need to be passed via argument lists.

The main requirement for the UM-specific data described above is the use of

nm_spec_active to inform the copying of tracers between the UM’s tracer_ukca array

and UKCA’s internal tracer array used within ukca_main1. In the standalone code, the

tracer array passed to UKCA cannot be specific to a particular parent model, so this copying

will be moved outside UKCA. The tracer array passed to UKCA will then be the array used

internally.

It is less practical to eliminate the use of parent model specific indexing where UKCA-

specific processing occurs outside the ukca_main1 call, as required for plume scavenging.

UKCA-specific processing of GLOMAP-mode tracers occurs in the UM-convection

processing via calls to the UKCA subroutine ukca_plume_scav. Indexing of UKCA tracers

within this call uses the UM tracer order (with an offset into a composite array of all

scavenged tracers). The required mapping between parent tracer indices and UKCA field

19

names is currently derived from nm_spec_active, accessed via a shared module. This will

need to be replaced by passing similar information via a UKCA subroutine call. Changes to

ukca_plume_scav are also needed because the processing is slightly different for two

different UM convection schemes and needs to be re-packaged in a non-UM specific way for

potential use by other parent models.

Including ukca_plume_scav in the standalone code is a lesser priority than implementation

of the main time step routine since UKCA can run without plume scavenging. The

processing may therefore remain the responsibility of the UM until actually required in

another application.

4.3 Handling STASH Requests and Diagnostics

The UM needs to validate all STASH requests present in the Rose configuration file to

ensure that the requested prognostics and/or diagnostics will be available in the UKCA

configuration. Prognostics will always be available in the ukca_step input/output arrays, if

used by the model. Diagnostics must be requested individually.

UM diagnostic requests will be consolidated (by the UM) to create UKCA diagnostic requests

that will ensure the diagnostic fields are present in the output if they are available from the

current configuration. The UKCA diagnostic requests will be in the form of two separate lists

of field names, for ‘flat’ and ‘full height’ diagnostics, and associated lists of flags (see Section

3.3). These will be passed to UKCA by calling ukca_set_flat_diagnostic_requests

and ukca_set_full_ht_diagnostic_requests respectively. Some diagnostics are not

required at every time step so ukca_update_flat_diagnostic_requests and

ukca_update_full_ht_diagnostic_requests may be called between time steps to

avoid unnecessary work within ukca_step.

The validation of STASH requests is currently done by tstmsk_ukca during execution of

the subroutine prelim, within stash_proc, which loops round all of the STASH requests

calling tstmsk to check availability of each item. To use the new API, the UM must instead

check for availability of prognostics by field name in the lists returned by

ukca_get_tracer_varlist or ukca_get_ntp_varlist. The availability of diagnostics

will be established by checking status flags returned by

ukca_set_flat_diagnostic_requests and/or

ukca_set_full_ht_diagnostic_requests after calls to these routines with all

required diagnostics set active. Having established the availability or otherwise of all

required output fields in the current UKCA configuration, individual STASH requests can

then be processed in the existing prelim loop by checking against this field availability

status. The call to tstmsk_ukca below prelim will become redundant.

Calls to get the field lists for the prognostics will use information already prepared by

ukca_setup. Calls to set the diagnostic requests must use the STASH system data to

determine the required field name lists as requested via Rose. These lists should be based

on the set of all diagnostic item requests with duplicates removed. A translation from STASH

20

code to the corresponding field name, based on a UM lookup table, will be required to

translate the original STASH requests into a list of field names.

In the initial implementation of the standalone code, tstmsk_ukca could still be used to

check validity of diagnostic requests in the set/update diagnostic request subroutines, given

an association of option codes with field names within UKCA. As for tracer setup, this is not

an ideal long term solution.

Within ukca_step, the diagnostic processing will need to refer to the internal list of active

diagnostic requests instead of referring to the STASH system to determine whether a

diagnostic is needed. Processing will need to be re-worked to use variable names rather

than STASH codes and instead of calling copydiag or copydiag_3d (which write the

diagnostic values to a STASH work array) it will copy them to the 2-D or 3-D diagnostic

output array passed to ukca_main1. It will also set the status flags as indicated in Section

3.3. The UM must then translate variable names to STASH codes, copy the fields in the

output arrays to the appropriate section’s STASH work array and call stash to do the

handling. The variable names associated with the 2-D and 3-D arrays will match those

passed to the subroutines called to set the requests and can also be obtained by calling

ukca_get_flat_diagnostic_varlist and

ukca_get_full_ht_diagnostic_varlist. These subroutines can be called after

ukca_step to access the status flags that indicate the validity of the fields before copying

them to STASH.

A disadvantage of identifying diagnostics by variable name rather than by number is that

UKCA will not be able to refer to ranges of items. Association of appropriate group identifiers

with related variables may provide an efficient alternative.

Plume scavenging diagnostics calculations require a tracer difference array as input. This

requires capture of the difference in UKCA tracers before and after convection in the parent

model (via calls to ukca_plume_scav_initial and ukca_plume_scav_final, see

calling tree in Section 4 introduction). It is reasonable for this simple differencing to be the

responsibility of the parent but the details of the calculation should be the responsibility of

UKCA. However, the difference in the way the tracer array is ordered between the parent

model and UKCA must be considered. If UKCA is to access a parent-specific tracer

difference array (as is currently done within the ukca_main1 call), the required mapping

information should be passed to UKCA alongside the difference array. As already noted

(Section 3.2), the diagnostic calculations use a vertical integration scheme that requires

calling a parent subroutine.

The systematic replacement of diagnostic processing is a major task that is unlikely to be

suitable for a single ticket. However, it should be possible to create a working standalone

code for non-UM applications without replicating all UM diagnostics by disabling the

processing for unsupported diagnostics using pre-processor directives. This would allow

diagnostics to be added after the initial implementation phase as and when they are

required.

21

4.4 Moving Input from External Files out of UKCA Time Step Subroutine

The main file input processing within UKCA is that associated with emissions. NetCDF

access occurs in ukca_emiss_init and ukca_emiss_update. ukca_emiss_init

loops through the list of NetCDF input files to count emission fields before setting up an

emissions structure that is used as a reference database for the rest of the emissions

processing. It then loops through the files again to add metadata to the data structure. These

loops will need to be moved to a separate top-level emissions processing subroutine

ukca_set_emissions_from_nc that can be called before ukca_step. The new

subroutine will be responsible for setting up the emissions structure on its first call and

reading the field data (at intervals specified in the metadata) by calling

ukca_emiss_update on first and subsequent calls. The data structure will also include

online emissions as before but these will still be processed within ukca_main1.

ukca_set_emissions_from_nc will need to allow space for the online emissions when

setting up the emissions structure. (This is possible because the number of online emissions

required is fully determined by the UKCA configuration details.)

To support LFRic, data exchange between the parent and the UKCA emissions structure will

need to be supported by new subroutines ukca_get_emission_fields and

ukca_set_emission_fields (since LFRic will not allow internal persistence of fields).

However, these are not required in the initial UM implementation. Other parents that do not

use the present NetCDF-based system to retrieve emissions data from external files might

use ukca_set_emission_fields instead of ukca_set_emissions_from_nc. This

routine could eventually include functionality for setting up metadata in the emissions

structure, via optional arguments, but this could be added as and when required without

affecting backwards compatibility.

Other file-based input processing includes that for offline oxidants, various reference data

sets as listed in Section 3.2 (including the FAST-JX specifications). Offline oxidants are

treated in the same way as emissions and the NetCDF access will likewise be moved out of

ukca_main1 and be handled by a top-level subroutine ukca_set_oxidants_from_nc.

Access to the other data sets will also need to be moved outside ukca_main1 and handled

as described in Section 3.3.

Implementation of the functionality to retrieve environment data from reference data sets is

of relatively low priority and could remain the responsibility of the UM initially, with the UM

calling ukca_set_environment and ukca_set_gas_mixing_ratio to pass the data to

UKCA in the interim. To replicate existing functionality for 2-D photolysis with the retrieval

remaining the responsibility of the UM, a subroutine to set/update these data directly would

be required in place of ukca_set_photolysis_rates_from_lat_ht.

22

4.5 Error Handling

Fatal errors should terminate UKCA but not the parent model (since the parent may want to

continue without running the offending UKCA configuration). Instead, the procedure name, a

UKCA-specific error code and an error message will be passed back to the parent. The UM

can use this information to call ereport. Although the transfer of responsibility for deciding

whether to terminate to the parent is not required for the UM, the internal ereport calls will

need to be replaced in all UKCA modules anyway so it is appropriate to introduce the new

error handling scheme at the same time.

On encountering a potentially fatal error condition, a procedure will return control to the

calling procedure after setting output arguments provided for the error information and

calling dr_hook (or the equivalent generic routine) if applicable. Each call to a procedure

that can potentially trap an error must be then be followed by a status check to determine

whether the calling procedure can continue.

Increasing the amount of error checking available to the parent application prior to starting

UKCA integration would be desirable as indicated in Section 2 to support prior validation of

input for ensemble runs but is not a high priority.

4.6 Replacing Internal UM Subroutine Calls

All calls to UM subroutines (see Section 3.2) must be systematically replaced by calls to the

equivalent generic routines. Each generic subroutine will have its own module that could

potentially be replaced in the build process, as indicated in Section 2, as an alternative to

run-time assignment of parent handlers.

Generic UKCA internal subroutines will either accept parent model subroutines (or pointers

to parent model subroutines) as arguments or use pointers declared in UKCA modules that

will reference parent model subroutines. In either case, the appropriate parent model

subroutines will be provided by calling a new subroutine ukca_set_handler, passing as

arguments the subroutine and a ‘handler type’ label against which it is to be registered. The

label will indicate its intended use and UKCA will use the labels to check availability of

particular parent model subroutines.

In some cases, such as reading particular input data, the UM subroutine will be UKCA-

specific. However, any UKCA-specific processing that it is practical to separate out should

be moved to the UKCA internal subroutine calling it, so that other parent models can take

advantage of it.

In other cases, such as printing to a log file, the appropriate UM subroutine will be general

purpose. Such subroutines will not necessarily conform to a UKCA specification as defined

by the new API. If this is the case, the UM will need to provide a UKCA-compatible wrapper

and pass the wrapper subroutine to UKCA. For example, the UM might pass a subroutine

called um_print_handler to UKCA (via ukca_set_handler). In UKCA, a subroutine

ukca_print would call this handler which would then call umPrint.

23

A substitute for the UM ereport subroutine will only be required for non-fatal errors. This

UKCA warning handler should be able to receive an optional parent model warning handler

and call it if present or do nothing other than possibly reset the warning code if not. In the

UM case, warnings would be printed by the UM warning handler via a call to ereport.

4.7 Giving Parent Control of Workspace Persistence

The workspace allocated internally should be reviewed and deallocation statements added if

not already present. These and existing deallocation statements for such workspace will be

put under the control of the parent via one or more switches. This is not required for the UM

or for the initial standalone code but will be essential for LFRic where persistence of fields

allocated for the model domain will not be possible.

4.8 Handling Configuration Data

At the end of the refactoring process, the only UKCA module used by the UM should be the

UKCA API module and the final version of the API module should contain procedures and

fixed parameters only. No UM modules should be used within UKCA.

The module ukca_option_mod containing the subroutine read_nml_run_ukca and the

namelist variables will remain part of the UM (and should be renamed accordingly).

ukca_setup will need to accept all namelist variables as optional input arguments and

provide default values. These default values would probably be the same as or equivalent to

the namelist defaults. However, this is not a strict requirement and they could be changed in

future versions without reference to the UM.

The UM, in common with other parent applications, will require access to some configuration

data other than that provided by the prognostic and diagnostic field name lists. In the UM,

these could be obtained from the renamed ukca_option_mod module, however this would

not be good practice. The configuration data held within UKCA define the actual

configuration and these should be accessed instead. A review of the UM code (including

GLOMAP_CLIM), excluding that now in modules that have been formally identified as UKCA

modules, will be needed to determine exactly what data are required. The data can then be

provided by API subroutines of the form ukca_get_config_*. Each such subroutine

should return a logical group of variables. In choosing these, consideration should be given

to what variables might be generally useful to other parent applications.

4.9 Test Harness for Testing Non-UM Functionality

Testing outside the UM will be required to ensure that the new UKCA code is truly

independent. A basic test harness will be needed for setting up some simple tests. These

24

should include tests that are not covered by the UM application, such as running with a fixed

environment. It will be important to include standard tests with the test harness as ‘UM’

standard jobs in rose stem to ensure that the independence of the code is not compromised

by subsequent changes, pending the transfer of UKCA to its own repository.

Once the UKCA reset functionality has been implemented, standard tests should also

include tests where multiple UKCA runs are performed in a single execution of the main

program, in particular to ensure that a repeat run with an identical configuration following a

call to ukca_reset produces the same results.

25

Appendix: Provisional UM Tickets for Initial Standalone Code

A provisional list of UM tickets is given below for the priority changes that will create the

initial standalone code. Suggested target UM release versions are given against each with

the code submission review deadlines.

Initial re-factoring of UM-UKCA interface (#4367 for vn11.4, 31-MAY-2019)

Move D1 access and STASH handling out of UKCA and re-arrange initialisation code as

indicated in Section 4.1. This includes separating UM-specific and UKCA code currently in

ukca_setd1defs and separating UM-specific and UKCA processing of non-transported

prognostics. Ensure early availability of NTP requirements to prepare for the verification of

NTP output requests using UKCA data for reference rather than STASH. Add ukca_setup

and ukca_get_ntp_varlist.

UKCA interface refactoring: environment fields (for vn11.4)

Add ukca_set_environment and ukca_get_environment_varlist. Use these to

determine environment variables required and supply from D1.

UKCA interface refactoring: tracers (for vn11.4)

Add ukca_get_tracer_varlist and implement tracer handling as described in Section

4.2 so that the array of tracers passed to UKCA is independent of the UM. Exclude plume

scavenging.

UKCA interface refactoring: emissions and reference data (for vn11.5, 04-OCT-2019)

Divide emissions processing between ukca_set_emissions_from_nc and ukca_main1

as indicated in Section 4.4. Likewise, divide offline oxidants processing between

ukca_set_oxidants_from_nc and ukca_main1. Remove reference data retrieval from

UKCA and pass data to UKCA via ukca_set_environment and

ukca_set_gas_mixratio. Exclude 2-D photolysis support.

UKCA interface refactoring: diagnostics (for vn11.5)

Implement the diagnostic handling scheme described in Section 4.3 with a focus on its

mechanics rather than on making all diagnostics available outside the UM. Only a small

range of diagnostics will be included initially. Others will be disabled by pre-processor

directives unless built with the UM. Validation of UM diagnostic requests will use the new

method for diagnostics available outside the UM and the old method for all other fields

requested. Future tickets can add diagnostics as and when needed. Add

ukca_set_*_diagnostic_requests, ukca_update_*_diagnostic_requests and

ukca_get_*_diagnostic_varlist.

UKCA interface refactoring: configuration data and FAST-JX specs (for vn11.5)

Modify ukca_setup to set configuration data from namelist variables read by UM (see

Section 4.8). Add ukca_set_fastjx_specs_from_file,

26

ukca_get_fastjx_specifications, ukca_set_fastjx_specifications. Do final

UM-side changes to remove all use of modules now designated as UKCA modules except

API. Add ukca_get_config_* routines as needed.

UKCA interface refactoring: generic handlers (for vn11.5)

Add ukca_set_handler and generic UKCA routines (see Section 4.6) to replace

umPrint, ereport, tr_mix, trsrce, t_int and NetCDF access subroutines in

emiss_io_mod. Exclude wholesale replacement of umPrint and ereport: just do enough

to test handler.

UKCA interface refactoring: umPrint and ereport replacement (for vn11.5)

Systematically replace umPrint and ereport throughout the designated UKCA modules,

implementing fatal error handling as described in Section 4.5.

Standalone UKCA and test harness (for vn11.6, 31-JAN-2020)

Disable any remaining UM-specifics in UKCA modules when built outside the UM. Overload

API subroutine interfaces as needed for 0-D, 1-D or 3-D domains. Construct a basic test

harness to test main functionality (see Section 4.9) and ensure that UKCA works within this

test harness independently of the UM.

