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Talk outline.

* Brief history of modelling:

What do we mean by models?
Why do we model?

* Building blocks of a model:

Writing a chemical process in a mathematical framework.
Solving our mathematical problems.

« Examples:
0-D model studies.

 Evaluation:
Process based/oriented model evaluation.

e Q&A:
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What is a model?

Lot’s of definitions:

“A model is as a simplified representation of
a complex system that enables inference of
the behavior of that system.”

Modelling has been going on for a long
time!

" THE WEATHER,
———————
METEOROLOGICAL REPORTS.

‘%eﬁlﬁiﬁ'" B |E (M| D |Rlo|lL|s

§to 9 am
Nalr., ., .. 2054 | 57| 66 |WSW.| 6 [9 | o |8
Aberdeen,, .. 2060 | 50 | 54 | S8W.| 5 |1 | b (3
Leith,, o0 oo 2970 | 61 | 55 Ww. 3|6 ¢ |2
Berwick ., .. 2009 | 59 | 35 |WSW.| 4 (4| ¢ |2
Ardrossan . .. 2073 | 57 | 55 w. 614/ o |5
Portrush ., ..| 2072 | 57 | 54 | SW. 212 b |2
Shields 4, .. 2080 | 59 | 54 {WSW.| 4|5 | o |8
Galway .. ..| 2083 | 65 | 62 W. 6 (4| c |4
Searborough ,,| 2085 | 59 | 56 w. 36| c |2
Liverpool.. ..{ 2891 | 61 | 36 SW. 218 o |2
Valentia ., ..| 2087 | 62 | &0 S.W. 215 o |8
Quecostown ,,| 2083 | 61 | 59 w. 316 ¢ |2
Yarmouth,, ../ 300 | 61 | 5 w. 52| ¢ |8 .
London ., .. %002 | 62 | 5 8.W. 12 b |-
Dover.. . .. $00¢ | 70 | 6t EAVA 317 | o |2
Portsmouth ,.| 8001 | 61 | 59 Ww. 3160 |2
Portland ,, ..| 8003 | 63 | 59 B.W. 312 ¢ |3
Pigmouth,. .. 3000 | 62 | 8 w. 5|1 b |4
Penzanco ., .. 3004 | 61 | €0 8.W. 216 e |3
Copenhagen ..| 2004 | 64 | — |WSW.| 2 {6 c |3
Helder ., ) 299 | 63 | — |[WBW.| 6 |5 ¢ |2
Brest ., ,,| 8009 | €0 | — 8W, 216 [le |5
Bayonne ., .| 8013 | 68| — - - |9 | m |5
Lisbon . ../ 818/ 70! — INNW.| 413 pn |2

General weather probable during next two days in the—

North—Moderate westerly wind ; fine,

West—Moderate south-westerly ; fina,

Bouth—Fresh westerly ; fine,

Explanation,

B. Barometer, corrected and reduced to 32° ab mean sea level:
each 10 feet of vertical rise causing about ome-hundredth of an inch
diminution, and each 10° above 32° causing nearly three-hundredths
fncrease. E. Exposed thermometer in shade, M. Moigtzned bulb
{for evaporation and dew-point), D, Dircetion of wind (true—
two points e/t of magnetit), T, Force (1 to 12—cstimated). C.
Oloud (1 to 9). I Initials :~b., blue sky; e., clonds (detached):
f., fog ; h., hail ; 1, lightning ; m., misty (hazy); o., overeast (dull};
r., rain ; 8, snow ; b, thunder, 8, Sea disturbance (1 to 9),

15t August 1861, The Times



Building the model — on paper!

Most of the interesting problems you want to study will be impossible to
solve exactly — need to develop a model to represent the system.

l Iteratively improve model
Develop simplified Determine metrics and
Define the question mathematical diagnostics to evaluate
of interest. > | representation of model against
processes to be observations with .
solved.

L) Use model to e.g.

make predictions.




Chemistry in the atmosphere
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Most chemically actlve molecules in the atmosphere arise from
emissions (source) and the subsequent formation of intermediate
species. The ultimate fate of emissions in the present-day atmosphere is
oxidation. A mechanism (shown schematically above) represents this

process.




Chemistry in the atmosphere

The model we use is based on chemical kinetics. For every in
the mechanism we can write an overall rate equation. For each species
(A, B, C etc) we can then write a continuity equation —an ODE which

describes how the species concentration ([A], [B] etc) changes over
time.



Chemistry in the atmosphere

d[A] _ _
o —K[AI[B] = L,
2 = +k[A][B] = P

The overall rate equation can tell us if there is a production of a species
or a loss.




Chemistry in the atmosphere

e k{A][B
— = —K[A][B]

_EA
k = Axexp(RT)

The rate constant for a reaction is usually not constant! It usually
depends on temperature and can also depend on pressure OR even the
concentration of things like water vapour (see asad_bimol or
asad_trimol).




Chemistry in the atmosphere

Al _ k|A|[B
G = A
k=A><exp(;7:4)

The rate constant is important as it measures how quickly a reaction will
happen. If [B] is much greater than [A] then, k[B] will be roughly
constant — in which case we can write:




Chemistry in the atmosphere

d|A]
dt B

k’=A><exp(R

= —k'[A]

7)o

k" is now a pseudo-first order rate constant. It has dimensions of 1/time
and so 1/k’ gives us a characteristic time constant t, for the reaction.




Chemistry in the atmosphere
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k" is now a pseudo-first order rate constant. It has dimensions of 1/time
and so 1/k’ gives us a characteristic time constant t, for the reaction.




Chemistry in the atmosphere

d[A]
d

Jiy = f o) PnF@ dA
0

J;;) is the photolysis coefficient (rate constant) for the reaction. It
depends on the flux of photons (F), the quantum yield (¢) and the
absorption cross-section of the molecule (o).

= —/[A]




The Continuity Equation

G[X]_ - - =P
- L, -D, -V *U[X])

Local Change / Chemlcm

in [X] with Emlss[ons and Deposition and transport (flux out)
: Chemical
time. i
Production

This equation is at the core of all the problems we will want to study
regarding chemistry in the atmosphere. The difficulty lies in
parameterizing the individual terms.
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Source: EC-JRC/PBL. EDGAR version 4.0. http://edgar.jrc.ec.europa.eu/, 2009
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Emissions
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Source: EC-JRC/PBL. EDGAR version 4.0. http://edgar.jrc.ec.europa.eu/, 2009
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Emissions

JOINT RESEARCH CENTRE

Zerke el EDGAR - Emission Database for Global Atmospheric Research

Commission > JRC > IES > ACU > EDGAR

iNnformation | emission data | other activities l liNnks ‘ search Custom Search | ¥

EMISSION DAY ABASE FORN\ ATMOSPHERC RESEARCH

The Emissions Database for Global Atmospheric Research (EDGAR) provides global past and present day anthropogenic emissions of greenhouse gases and air
pollutants by country and on spatial grid. The current development of EDGAR is a joint project of the European Commission JRC Joint Research Centre and the

Netherlands Environmental Assessment Agency (PBL).

16-12-2014
Further slowdown in the increase in global CO2 emissions in 2013.
JRC report 93171 / PBL report 1490; ISBN 978-94-91506-87-1 December 2014

2013 saw a further slowdown in the increase in global CO2 emissions from fossil fuel use and cement production that started in 2012. The emissions grew with only
0.7 billion tonnes (Gt) CO2 in 2013 to the new record of 35.3 Gt CO2. The global CO2 increased at a notably slower rate (2%) than on average in the last ten years
(3.8% per year since 2003, excluding the credit crunch years). This signals & partial decoupling of global emissions and economic growth, which reflects mainly the
OWe ll ll Qrowin aie o i A i i i l‘ . l' nd e - ice e A - e ene i ‘l i ie —
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Deposition

(Ra) Aorodynamic

resmtance

Bound f
R) e

Cuticular
Incanopy
scodynamic
Suart resistance
mnu:tco (R")
(R)
Sed
resistance

(Rows)

National Centre for
Atmospheric Science
NATURAL ENVIRONMENT RESEARCH COUNCIL

Stomatal
resistance (R*)

Deposition modelled
using a resistors in series
approach.

Raincm st

Deposition flux = 1/Ra +
1/Rb + 1/Rc + ...




Reactions (Production and Loss)

oxidant or hy
-

=0

Need to build up a “picture” of the chemistry
of interest.

Mechanism development is just another
aspect of modelling — parameterizing the
millions of possible reactions to a solvable
subset.

VOC

hydroperoxide 02
ROOH
carboxylic acid eroxynitrate
RC(O)OH 2 =—= ROONO,
peroxyacid
RC(O)OOH |

alcohol | . | nitrate

ROH |~/ RONO>

carbonyl RO + NO7

RC(O)R ]

isomerization

decomposmon X

1,4-hydroxycarbonyl
RR'C(OH)-C-C-C(O)R"




Reactions (Production and Loss)

Kinetic data bases:

Nsr Home
et nte s Sorasbhy el el Acccssibilil?ﬁ;lfixgég
Kinetics # N "

Database NIST Chemical Kinetics Database

Resources

Simple Reaction  Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8

Search Data Version 2013.03

Search Reaction i =y 2

Database A p of data on gas-p

Search A £ & . A A . ) $ 3 4

B(i:g{icogmphic Notice: We are now accepting requests for abstracting kinetics data from journal articles and other references. Please use the "Submit an Article" link at the left if . . . .
Database you find an article that has been missed in the database. You may request abstracting of a newer publication as well. P rov I d e a rC h I Ve S Of kl n et I C
Set Unit " a0

P Reaction Database Quick Search Form d t d . d

Feedback Enter the reactant(s) and/or product(s) in the fields below. Fields may be left blank. a a a n p rov I e

Submit an Article = R I + Submit | Clear ) ) .
Rate Our izzgﬁcfg'liﬁffn'ggﬁvﬁfnﬁfpﬂms. ty... eva lu a tl ons of kl n et ic d 5 ta -

Products and bibliographic search form

Services
e ‘Welcome
Citation About the database.
Help Getting Started
A quick i ion to the database.
Other Databases
Credits and History

NIST Standard ‘Who created the present version and the earlier versions?
Reference Data

Task Group on Atmospheric Chemical Kinetic Data Evaluation

A Recent changes Task Group Members Email list IUPAC Task Group publications IUPAC home page Related web sites Research proje

Evaluated Kinetic Data

This website provides kinetic and photochemical data evaluated by the IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation. Also see
Chemistry and Physics publications:
Volumes 1-6 in Atmospheric Chemistry and Physics (ACP)

Gas phase

National Centre fOl' Search all gas-phase reactions, by species name, formula, Inchi and smiles >

Atmosphe”c SCIence View most recently added/changed datasheets. If you want to be notified when any of this information is updated please join our mailing list.

NATURAL ENVIRONMENT RESEARCH COUNCIL

Gas phase Heterogeneous on ice



Reactions (Production and Loss)

(iii) OH +X=--: R; = k;[X][OH] k-[X] =1.062s 1,

i) CH;+OH=--=CO R;=Fk;[CHy[OH] k;=1266X10"s"'ppt!
(ii) CO+OH=-- Rg = kg[CO][OH] k¢ =5.08 X107 %s™! ppt !




Reactions (Production and Loss)

i) CH;+OH=--=CO R;=Fk;[CHy[OH] k;=1266X10"s"'ppt!
(ii) CO+OH=-- Rg = kg[CO][OH] k¢ =5.08 X107 %s™! ppt !
(iii) OH +X=--: R; = k;[X][OH] k-[X] =1.062s 1,
d[CH

Ol o, R
d[CO

[dt ] :SCO +R5_R6
d[OH

[dt | Son — Rs — Rg— Ry




Reactions (Production and Loss)

(i) CO+OH=--

Rg = k6[CO] [OH]

ke =1.266 X107 s L ppt !
ks = 5.08 X107 % s~ ppt !

(iii) OH+ X=--- R; = k;[X][OH] k-[X] =1.062s 1,
l Jacobian
d[CH,] d[CH,] d[CH,]

) () ()
0 9[CH,] d[CO] 9[OH]

di J = d¢ dt dt
d[OH )

[dt ] _ Sow— Ri— Ro— R.. 9[CH,] 9[CO] 9[OH]




Methane oxidation is more complex

Atmospheric oxidation of CH, species lifetime
CH,+OH — CH;+H,0 T=10yrs
CH;0, + NO — CH;0 + NO, T=100s
HCHO + OH — CO +H +H,O T=1day
HCHO + hv — CO + 2H
CO+OH — CO, +H T = 3 months
Drop the very and very short-lived species, replacing the latter

with their ultimate oxidation products (e.g., HO, for H)




Reactions (Prod

uction and Loss)

THIRD EDITION

Let ASAD do the hard work for you!!

Geosci. Model Deyv., 11, 3089-3108, 2018
https://doi.org/10.5194/gmd-11-3089-2018

© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quasi-Newton methods for atmospheric chemistry simulations:
implementation in UKCA UM vn10.8

Emre Esentiirk!2, Nathan Luke Abraham'-, Scott Archer-Nicholls!, Christina Mitsakou!*?, Paul Griffiths'=,
Alex Archibald!, and John Pyle!-?

! Department of Chemistry, University of Cambridge, Cambridge, UK

2Mathematics Institute, University of Warwick, Coventry, UK

3National Centre for Atmospheric Science, Cambridge, UK

dcurrently at: the Centre for Radiation, Chemical Environments and Hazards, Public Health England, Chilton, UK

Correspondence: Emre Esentiirk (e.esenturk.1@warwick.ac.uk)
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Revised: 22 May 2018 — Accepted: 8 June 2018 — Published: 1 August 2018




Model types: Example 1 - the box

The 0-D box model — possibly the best way to get into
modelling atmospheric chemistry

When running a box
model it’s common to Production
think of it as a well (molecules cm3 s1)

mixed parcel of air.

It’s common to assume

a fixed temperature and

a fixed length scale (e.g. Flux out (molecules

the boundary layer

Chemical

Chemical Loss
(molecules cm3 s1)

cm3si)
height — NB needed for
converting emission
fluxes and deposition
rates).
Emissions (molecules Deposition (cm s1) /
cm2s1) / “height of “height of box” cm

box” cm




Model types: Example 2 — many boxes

The 3-D Eulerian model (e.g. UM-UKCA) — possibly the most
widely used modelling tool. Think of it as ~ 10° box models!

& The resolution of global climate models has improved
- L 1. First IPCC assessment report (1990) 2. Second IPCC report (1996)
/ M > N =
Longlltude y ’

/ . == - J—
(/]
&
‘D\\ A
N 3. Third IPCC report (2001)
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Resolution is a big problem. If you think
7 mm about chemistry, it’s highly dependent
on concentration gradients!



Model types: Example 2 — many boxes

The 3-D Eulerian model (e.g. UM-UKCA) — possibly the most

10° box models

. Think of it as ~

ing tool

widely used modell

—removes

Icosahderal grid

Cubed sphere grid with adaptive

pole singularities.

— nested higher resolution

mesh
area.

See
SN

——
==

———

=%

=
S

N

S

S mwE N

s
SSSme

X

National Centre for
Atmospheric Science

NATURAL ENVIRONMENT RESEARCH COUNCIL



Model Evaluation:

Comparing models and reality.

One of these images shows a Turner nominated art piece, which sold for £150,000.

National Centre for BYE ‘
Atmospheric Science R




Model evaluation can mean
many things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model verification — where we quantify the predictive
capability of our model. Again we compare the model
and observations but this is different to calibration as we
will not be using the results of these comparisons to
modify the model logic/parameters.

For simple models (and for code) verification may include
checking the logic of the model. This is increasingly difficult
for the complex models we use like UKCA.



Model evaluation can mean
many things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model verification — where we quantify the predictive
capability of our model. Again we compare the model
and observations but this is different to calibration as we
will not be using the results of these comparisons to
modify the model logic/parameters.

It is vital that the observational data used in model
verification is distinct from the data used in calibration. NB
this is not always the case or even possible.



Model evaluation can mean
many things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model validation — all models are wrong, some models
are useful. Not to get too bogged down by philosophical
argument but from a technical perspective, a valid model
is one in which the scientific or conceptual output is
acceptable for its purpose.

For those wanting to think more meta: Can you ever
validate a model?



Model evaluation can mean
many things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Sensitivity analysis — where the response of the model
to changes in inputs/parameters is quantified. This
understanding is important for:

1) The range of suitability of the model

2) ldentifying “key” parameters/inputs

3) Understanding behavior at critical points

We will touch on perturbed parameter ensembles (PPEs — a
type of sensitivity analysis) later.



Model evaluation can mean
many things.

Lets define what we mean by model evaluation to be multi
component. Model evaluation includes:

Model calibration

Model verification

Model validataion

Sensitivity analysis

And it requires some objective measures of “goodness of fit”



How can | tell if my model is
good or bad?

First, don’t forget to focus on what you are comparing!
Integral quantities? Hourly/high time frequency data? Other
model data? What are the biases in the observational data?
How are the characterized?

There are many, many, many, statistical measures that we
can use and software like R and Python make it easy to
abuse them.



Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
o = standard deviation

I. Mean Bias, Mean Error, and Root Mean Square Error (ppb)

Mean Bias = 1
—Y (M-0)
n-

1 n
Mean Error=  — Z | M _ O| Root Mean Square Error =
n-




Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
o = standard deviation

Il. Normalized Mean Bias and Error (unitless)
Normalized Mean Bias =

Z’I(M—O) Y |M- 0

n Normalized Mean Error =

2,(0) Y (0)

1



Air Quality Model Performance Metric Definitions

Common Variables:

lll. Fractional Bias and Error (unitless)

M = predicted concentration
O = observed concentration

X = predicted or observed concentration

o = standard deviation

Fractional Bias =

S

n

Y (M- 0)

1

1

£

Fractional Error =

S

Y IM-0

Z’;((M+ 0)

|




Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
o = standard deviation

IV. Correlation Coefficient (unitless)
Correlation =
P 4 VI. Coefficient of Variation (unitless)
n
1 Z O - 0 M - M Coefficient of Variation =

- X
(n-1) " o o

o m

> Q



Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
o = standard deviation

IV. Correlation Coefficient (unitless)
Correlation =

1 &((o-0) (M-M

w2l e )

o m

V. Coefficient of Variation (unitless)
Coefficient of Variation =

> Q

VI. Index of Agreement (unitless)
Index of Agreement =

1-

n

Y (0- M)’

1

3w~ 0f+ o dlf




Error:

Mean Absolute Error

“7 i — &Ly ", €;
I\IAE — Zl—] |y ‘ _ Zr*l | ‘

n n

is a straightforward measure of how far away our model
simulation (y) was from our observations (x) on average. It
takes the modulus of the absolute error (bias) and so is
always positive.



Error:

Mean Squared Error

n

1 -
MSE = — Y, - Y;)".
PRI

is measure of both the bias and the variance of the model.
The variance is the expectation of the squared deviation of a
random variable from its mean. It measures the spread from

the average.



Approaches to evaluation:

The MSE is the squared difference of the modelled (mod)
and observed (obs) values:

nt 2

o d; — obs;
MSE = E (mod-obs)? = 2.i=1(mod; — obsi) : (1)

ng

where E(-) denotes expectation and n; is the length of the
time series. The bias is

bias = E (mod-obs) 2)
i.e. bias = mod — obs. Thus, the following relationship holds:
MSE = var (mod-obs) + biasz, 3)

which is a well-known property of the MSE, (var(-) is the
variance operator). By using the property of the variance for
correlated fields:

var (mod-obs) = var (mod) + var (obs) — 2cov(mod,obs), (4)

the final formulation for the MSE components reads as fol-
lows:

MSE = bias® + var (mod) + var(obs) — 2cov(mod,obs), (5)

where the covariance term (last term on the right-hand side
of Eq. 5) accounts for the degree of correlation between the
modelled and observed time series. When the covariance
term is zero, var(obs) is referred to as the incompressible
part of the error and represents the lowest limit that the
MSE of the model can achieve. When dealing with model
evaluation, the modelled and observed time series are
typically highly correlated and therefore, within the limits
of the perfect match (correlation coefficient of unity),
cov(mod,obs) = cov(obs,obs) = cov(mod,mod) = var(mod)
= var(obs) and the MSE can be reduced to only the bias
term. That implies that the development of a high-quality
model needs to ensure

a. the highest possible precision in order to maximise the
cov(mod, obs) term;

b. the highest possible accuracy, in order to minimise the
bias.

Elaborating on Eq. (5), Theil (1961) derived the following:

MSE =(mod — 0bs)? + (Gimod — Gobs)”
4+ 2(1 — 7)OmodOobs- 6)

Solazzo et al Atmos. Chem. Phys., 16, 6263-6283, 2016



Approaches to evaluation:

MMSE is the minimum achievable Mean Square Error:
mMSE = o2, ,(1-r?)

Solazzo and Galmarini suggest:
MSE = (<mod> - <0bs>)? + (5,,,,4 - (Oops)? + MMSE

As this metric allows for quantification of accuracy (bias),
precision (variance) and associativity (unexplained portion
through the correlation coefficient —r)



AQMEII1
MSE of spectral components - ozone - May-September - EU - continent
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M5E of spectral components UKCA RAL ozone - May-September - EUJ




Approaches to evaluation:

When the analytical decomposition of the error into bias, variance and mMSE is applied to
the decomposition of the signals into long-term, synoptic, inter-diurnal and diurnal
components, information can be gathered that helps reduce the spectrum of possible
sources of errors and pinpoint the processes that are most active at a particular scale which
need to be improved. The procedure is denoted here as error apportionment and provides
an improved and more powerful capacity to identify the nature of the error and associate it
with a specific part of the spectrum of the model/measurement signal. The AQMEII set of
models and measurements have been used in the evaluation procedure.



Approaches to evaluation:

Spectral decomposition of modelled and observed

time series

Spectral decomposition
is not new and is widely
used in other fields of
physical science but has
been used less in
evaluating composition.

Courtesy of David Wade
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New approaches to evaluation:

Spectral decomposition of modelled and observed

time series

Spectral decomposition
is not new and is widely
used in other fields of
physical science but has
been used less in
evaluating composition.
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Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum, based on a least squares fit of sinusoids to data samples, similar to
Fourier analysis.!"/[2] Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in long gapped records; LSSA mitigates such
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From Wikipedia, the free encyclopedia

“" This article provides insufficient context for those unfamiliar with the subject. Please help improve the article
with a good introductory style. (January 2012) (Learn how and when to remove this template message)

The Kolmogorov-Zurbenko (KZ2) filter was first proposed by A. N. Kolmogorov and formally defined by Zurbenko.["] It is a series of iterations of a moving average
filter of length m, where mis a positive, odd integer. The KZ filter belongs to the class of low-pass filters. The KZ filter has two parameters, the length m of the
moving average window and the number of iterations k of the moving average itself. It also can be considered as a special window function designed to eliminate
spectral leakage.
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Approaches to evaluation:

sin(2m#(.1)t) + sin(27(.08)¢) +N(0, 16) with reconstructed signal
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Approaches to evaluation: CO

Region1

the cause of model bias for CO is most probably attributable ...

to the emissions and to a lesser extent the generally overes-
timated surface wind speed (Sect. 3.1.1). Sensitivity of the lllll““l“ll IIIIIII'IIIIII II
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Approaches to evaluation: NO,

The bias is the main contributor to the NO, error and
stems from a model underprediction of the mean observed
concentration during the entire year (but, with the excep-
tion of the winter season, it is positive for WRF-CMAQ in
NA and WRF-CMAQI in EU; Table S7). The bias is prob-
ably caused by a combination of factors, including emission
estimates (e.g., underestimation of residential combustion),
PBL height and vertical mixing at night (when wood com-
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Approaches to evaluation: A
success?

Although remarkable progress has been made since the first
phase of AQMEII, both in terms of model performance and
in terms of developing a more versatile and robust evalu-
ation procedure, results of AQ model evaluation and inter-
comparison remain generic since they fail to associate errors
with processes, or at least to narrow down the list of pro-
cesses responsible for model error. AQ models are meant to
be applicable to a variety of geographic (and topographic)
scenarios under almost any type of weather, season, and
emission conditions. For such a wide range of conditions the
inherent nonlinearity among processes is difficult to disen-
tangle, and specifically designed sensitivity runs seems to
be the only viable alternative. A model evaluation strategy
relying solely on the comparison of modeled vs. observed
time series would never be able to quantify exactly the er-
ror induced by biogenic emissions, vertical emission profiles,

www.atmos-chem-phys.net/17/3001/2017/

or their dependence on temperature, deposition, and vertical
mixing, for example, and the analyses presented in this work
are no exception. In fact, the methodology devised to carry
out the evaluation activity in this study has not succeeded in
determining the actual causes of model error, although it does
provide much clearer indications of the processes responsible
for the error with respect to conventional operational model
evaluation.

Atmos. Chem. Phys., 17, 3001-3054, 2017



Perturbed parameter
ensembles
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