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Talk outline.
• Brief history of modelling:
What do we mean by models?
Why do we model?
• Building blocks of a model: 
Writing a chemical process in a mathematical framework.
Solving our mathematical problems.
• Examples :
0-D model studies.
• Evaluation: 
Process based/oriented model evaluation.
• Q&A:



What is a model?

Lot’s of definitions:
“A model is as a simplified representation of 
a complex system that enables inference of 
the behavior of that system.”

Modelling has been going on for a long 
time!

1st August 1861, The Times



Building the model – on paper!

Most of the interesting problems you want to study will be impossible to 
solve exactly – need to develop a model to represent the system.

Define the question 
of interest. 

Develop simplified 
mathematical 
representation of 
processes to be 
solved.

Determine metrics and 
diagnostics to evaluate 
model against 
observations with .

Iteratively improve model

Use model to e.g. 
make predictions.



Chemistry in the atmosphere

Most chemically active molecules in the atmosphere arise from 
emissions (source) and the subsequent formation of intermediate
species. The ultimate fate of emissions in the present-day atmosphere is 
oxidation. A mechanism (shown schematically above) represents this 
process. 



Chemistry in the atmosphere

The model we use is based on chemical kinetics. For every reaction in 
the mechanism we can write an overall rate equation. For each species 
(A, B, C etc) we can then write a continuity equation – an ODE which 
describes how the species concentration ([A], [B] etc) changes over 
time.

A + B → C + D

𝑑[A]
𝑑𝑡

= −𝑘 A B = −
𝑑[C]
𝑑𝑡



Chemistry in the atmosphere

The overall rate equation can tell us if there is a production of a species 
or a loss.  

A + B → C + D

𝑑[A]
𝑑𝑡

= −𝑘 A B = 𝐿!
𝑑[C]
𝑑𝑡 = +𝑘 A B = 𝑃"



Chemistry in the atmosphere

The rate constant for a reaction is usually not constant! It usually 
depends on temperature and can also depend on pressure OR even the 
concentration of things like water vapour (see asad_bimol or 
asad_trimol). 

A + B → C + D

𝑑[A]
𝑑𝑡

= −𝑘 A B

𝑘 = 𝐴×exp
−𝐸!
𝑅𝑇



Chemistry in the atmosphere

The rate constant is important as it measures how quickly a reaction will 
happen. If [B] is much greater than [A] then, k[B] will be roughly 
constant – in which case we can write: 

A + B → C + D

𝑑[A]
𝑑𝑡

= −𝑘 A B

𝑘 = 𝐴×exp
−𝐸!
𝑅𝑇



Chemistry in the atmosphere

A → C + D

𝑑[A]
𝑑𝑡

= −𝑘# A

𝑘# = 𝐴×exp
−𝐸!
𝑅𝑇

×[B]
k’ is now a pseudo-first order rate constant. It has dimensions of 1/time 
and so 1/k’ gives us a characteristic time constant t, for the reaction. 



Chemistry in the atmosphere

k’ is now a pseudo-first order rate constant. It has dimensions of 1/time 
and so 1/k’ gives us a characteristic time constant t, for the reaction. 
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Chemistry in the atmosphere

A → C + D

𝑑[A]
𝑑𝑡

= −𝐽 A

𝐽(%) = 7
'

(
𝜎(),%)𝜑(),%)𝐹()) 𝑑𝜆

J(i) is the photolysis coefficient (rate constant) for the reaction. It 
depends on the flux of photons (𝐹), the quantum yield (𝜑) and the 
absorption cross-section of the molecule (𝜎). 



The Continuity Equation

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])

Emissions and 
Chemical 
Production

Local change 
in [X] with 
time.

Chemical Loss,
Deposition and transport (flux out) 

This equation is at the core of all the problems we will want to study 
regarding chemistry in the atmosphere. The difficulty lies in 
parameterizing the individual terms.



Emissions

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T



Emissions

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T

Garbage in garbage out! 



Emissions

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T



Deposition

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T

Deposition modelled
using a resistors in series 
approach.

Ra in cm s-1

Deposition flux = 1/Ra + 
1/Rb + 1/Rc + …



Reactions (Production and Loss)

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T

Need to build up a “picture” of the chemistry 
of interest.
Mechanism development is just another 
aspect of modelling – parameterizing the 
millions of possible reactions to a solvable 
subset.



Reactions (Production and Loss)
Kinetic data bases:

Provide archives of kinetic 
data and provide 
evaluations of kinetic data. 



Reactions (Production and Loss)

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T

In response to Fisher’s problem, Prather (1994, 1996) developed a simple one-
box chemistry model that demonstrated how chemical feedbacks could alter the
time scale of CH4 perturbations. Manning (1999) updated this model and applied
it to carbon isotopes, but in this example, the original box model is retained.
Consider a simplified model of the CH4–CO–OH chemical system as having
three reactions

ðiÞ CH4 COH0/0CO R5 Z k 5½CH4$½OH$ k 5 Z 1:266!10K7 sK1 pptK1

ðiiÞ COCOH0/ R6 Z k 6½CO$½OH$ k 6 Z 5:08!10K6 sK1 pptK1

ðiiiÞ OHCX0/ R7 Z k 7½X$½OH$ k 7½X$Z 1:062 sK1;

and three constant source terms (parts per trillion (ppt)Zpicomoles per mole;
parts per billion (ppb)Znanomoles per mole):

SCH4
Z 177 ppb yrK1 SCO Z 240 ppb yrK1 SOH Z 1464 ppb yrK1 :

Reaction (5) has intermediate steps (not shown) that produce CO. The X in
reaction (7) is a class of species that are an important sink for OH. The
continuity equations are

d½CH4$
dt

Z SCH4
KR5

d½CO$
dt

ZSCO CR5KR6

d½OH$
dt

ZSOHKR5KR6KR7:

The rate coefficients and source terms are chosen to represent average
tropospheric conditions and give steady-state abundances typical of the current
atmosphere:

½CH4$Z 1704 ppb ½CO$Z 100 ppb ½OH$Z 0:026 ppt :

The Jacobian (J ) of the chemical system is calculated from

J Z

v
d½CH4$

dt

 !

v½CH4$

v
d½CH4$

dt

 !

v½CO$

v
d½CH4$

dt

 !

v½OH$

v
d½CO$
dt

 !

v½CH4$

v
d½CO$
dt

 !

v½CO$

v
d½CO$
dt

 !

v½OH$

v
d½OH$
dt

 !

v½CH4$

v
d½OH$
dt

 !

v½CO$

v
d½OH$
dt

 !

v½OH$
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Reactions (Production and Loss)

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T
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Reactions (Production and Loss)

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T
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Methane oxidation is more complexWhat should we include in our chemistry?

Atmospheric oxidation of CH4 species lifetime

CH4 + OH CH3 + H2O τ ≈ 10 yrs

CH3 + O2 CH3O2 τ ≈ 1 ms

CH3O2 + NO CH3O + NO2 τ ≈ 100 s

CH3O + O2 HCHO + HO2 τ ≈ 1 s

HCHO + OH CO + H + H2O τ ≈ 1 day

HCHO + hν CO + 2H

CO + OH CO2 + H τ ≈ 3 months

H + O2 HO2 τ ≈ 1 ms

Drop the very fast reactions and very short-lived species, replacing the latter 

with their ultimate oxidation products (e.g., HO2 for H)



Reactions (Production and Loss)

Let ASAD do the hard work for you!!
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Abstract. A key and expensive part of coupled atmospheric
chemistry–climate model simulations is the integration of
gas-phase chemistry, which involves dozens of species and
hundreds of reactions. These species and reactions form
a highly coupled network of differential equations (DEs).
There exist orders of magnitude variability in the lifetimes of
the different species present in the atmosphere, and so solv-
ing these DEs to obtain robust numerical solutions poses a
“stiff problem”. With newer models having more species and
increased complexity, it is now becoming increasingly im-
portant to have chemistry solving schemes that reduce time
but maintain accuracy. While a sound way to handle stiff
systems is by using implicit DE solvers, the computational
costs for such solvers are high due to internal iterative algo-
rithms (e.g. Newton–Raphson methods). Here, we propose
an approach for implicit DE solvers that improves their con-
vergence speed and robustness with relatively small modi-
fication in the code. We achieve this by blending the exist-
ing Newton–Raphson (NR) method with quasi-Newton (QN)
methods, whereby the QN routine is called only on selected
iterations of the solver. We test our approach with numeri-
cal experiments on the UK Chemistry and Aerosol (UKCA)
model, part of the UK Met Office Unified Model suite, run in
both an idealised box-model environment and under realistic
3-D atmospheric conditions. The box-model tests reveal that
the proposed method reduces the time spent in the solver rou-
tines significantly, with each QN call costing 27 % of a call to
the full NR routine. A series of experiments over a range of
chemical environments was conducted with the box model to

find the optimal iteration steps to call the QN routine which
result in the greatest reduction in the total number of NR it-
erations whilst minimising the chance of causing instabilities
and maintaining solver accuracy. The 3-D simulations show
that our moderate modification, by means of using a blended
method for the chemistry solver, speeds up the chemistry rou-
tines by around 13 %, resulting in a net improvement in over-
all runtime of the full model by approximately 3 % with neg-
ligible loss in the accuracy. The blended QN method also im-
proves the robustness of the solver, reducing the number of
grid cells which fail to converge after 50 iterations by 40 %.
The relative differences in chemical concentrations between
the control run and that using the blended QN method are
of order ⇠ 10�7 for longer-lived species, such as ozone, and
below the threshold for solver convergence (10�4) almost ev-
erywhere for shorter-lived species such as the hydroxyl radi-
cal.

1 Introduction

With the advent of supercomputers, simulating the atmo-
sphere using computational models has become an integral
part of atmospheric science research, complementing ex-
perimental measurements, in situ and remote observations.
Model predictions are playing an increasingly important
role in both purely scientific investigations and public pol-
icy making (IPCC, 2013; Glotfelty et al., 2017). In recent
years, increasing computational power has enabled the de-

Published by Copernicus Publications on behalf of the European Geosciences Union.



Model types: Example 1 – the box

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T

Emissions (molecules 
cm-2 s-1) / “height of 
box” cm

Deposition (cm s-1) / 
“height of box” cm

X
Flux out (molecules 
cm-3 s-1)

Chemical 
Production 
(molecules cm-3 s-1)

Chemical Loss 
(molecules cm-3 s-1)

When running a box 
model it’s common to 
think of it as a well 
mixed parcel of air.
It’s common to assume 
a fixed temperature and 
a fixed length scale (e.g. 
the boundary layer 
height – NB needed for 
converting emission 
fluxes and deposition 
rates). 

The 0-D box model – possibly the best way to get into 
modelling atmospheric chemistry



Model types: Example 2 – many boxes

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T

The 3-D Eulerian model (e.g. UM-UKCA) – possibly the most 
widely used modelling tool. Think of it as ~ 106 box models!

Resolution is a big problem. If you think 
about chemistry, it’s highly dependent 
on concentration gradients!



Model types: Example 2 – many boxes

∂[X]
∂t

= EX +PX − LX −DX −∇•(U[X])T

The 3-D Eulerian model (e.g. UM-UKCA) – possibly the most 
widely used modelling tool. Think of it as ~ 106 box models!

Icosahderal grid – removes 
pole singularities.Cubed sphere grid with adaptive 

mesh – nested higher resolution 
area. 



Model Evaluation:  

Comparing models and reality. 

One of these images shows a Turner nominated art piece, which sold for £150,000. 



Model evaluation can mean 
many things. 

Lets define what we mean by model evaluation to be multi 
component. Model evaluation includes:

Model verification – where we quantify the predictive 
capability of our model. Again we compare the model 
and observations but this is different to calibration as we 
will not be using the results of these comparisons to 
modify the model logic/parameters. 

For simple models (and for code) verification may include 
checking the logic of the model. This is increasingly difficult 
for the complex models we use like UKCA. 



Model evaluation can mean 
many things. 

Lets define what we mean by model evaluation to be multi 
component. Model evaluation includes:

Model verification – where we quantify the predictive 
capability of our model. Again we compare the model 
and observations but this is different to calibration as we 
will not be using the results of these comparisons to 
modify the model logic/parameters. 

It is vital that the observational data used in model 
verification is distinct from the data used in calibration. NB 
this is not always the case or even possible. 



Model evaluation can mean 
many things. 

Lets define what we mean by model evaluation to be multi 
component. Model evaluation includes:

Model validation – all models are wrong, some models 
are useful. Not to get too bogged down by philosophical 
argument but from a technical perspective, a valid model 
is one in which the scientific or conceptual output is 
acceptable for its purpose. 

For those wanting to think more meta: Can you ever 
validate a model?



Model evaluation can mean 
many things. 

Lets define what we mean by model evaluation to be multi 
component. Model evaluation includes:

Sensitivity analysis – where the response of the model 
to changes in inputs/parameters is quantified. This 
understanding is important for:
1) The range of suitability of the model 
2) Identifying “key” parameters/inputs 
3) Understanding behavior at critical points 

We will touch on perturbed parameter ensembles (PPEs – a 
type of sensitivity analysis) later. 



Model evaluation can mean 
many things. 

Lets define what we mean by model evaluation to be multi 
component. Model evaluation includes:
Model calibration
Model verification
Model validataion
Sensitivity analysis

And it requires some objective measures of “goodness of fit”



How can I tell if my model is 
good or bad?

First, don’t forget to focus on what you are comparing! 
Integral quantities? Hourly/high time frequency data? Other 
model data? What are the biases in the observational data? 
How are the characterized? 

There are many, many, many, statistical measures that we 
can use and software like R and Python make it easy to 
abuse them. 



Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
σ = standard deviation

I. Mean Bias, Mean Error, and Root Mean Square Error (ppb)
Mean Bias = 

( )1
1n
M O

n

-å

Mean Error = 
1

1n
M O

n

-å Root Mean Square Error = 
( )M O

n

n
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Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
σ = standard deviation

II. Normalized Mean Bias and Error (unitless)
Normalized Mean Bias = 
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Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
σ = standard deviation

III. Fractional Bias and Error (unitless)
Fractional Bias = 
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Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
σ = standard deviation

IV. Correlation Coefficient (unitless)
Correlation = 
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VI. Coefficient of Variation (unitless)
Coefficient of Variation = 

s
X



Air Quality Model Performance Metric Definitions

Common Variables:
M = predicted concentration
O = observed concentration
X = predicted or observed concentration
σ = standard deviation

IV. Correlation Coefficient (unitless)
Correlation = 
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V. Coefficient of Variation (unitless)
Coefficient of Variation = 

s
X

VI. Index of Agreement (unitless)
Index of Agreement = 
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Error:
Mean Absolute Error

is a straightforward measure of how far away our model 
simulation (y) was from our observations (x) on average. It 
takes the modulus of the absolute error (bias) and so is 
always positive. 



Error:
Mean Squared Error

is measure of both the bias and the variance of the model. 
The variance is the expectation of the squared deviation of a 
random variable from its mean. It measures the spread from 
the average. 



Approaches to evaluation:
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developers to help make model improvements, and (iii) sets
the basis for the probabilistic evaluation (Fig. 1 of Dennis et
al., 2010).

Over the years, and despite the increasing relevance of
modelling systems for AQ applications, model evaluation
continues to rely almost exclusively on operational evalua-
tion, which basically involves gauging the model’s perfor-
mance using distance, variability and associativity metrics.
This common practice has little or no impact on model im-
provement, as it does not target the source of the modelling
error and does not discriminate between the reasons for ap-
propriate or inappropriate performance.

Such a requirement is even more pressing these days, with
current state-of-the-science AQ modelling systems account-
ing for an increasing number of coupled physical processes
and being described using hundreds of modules, which are
the result of decades of targeted and, generally, independent
investigations. Furthermore, AQ modelling systems typically
depend on external sources for the inputs of meteorology and
emissions data, as well as for boundary conditions. These
fields are generally produced by other models (which, in
turn, depend on external sources for initial and/or boundary
conditions) and, after substantial processing, are used by the
AQ modelling systems with no guarantee of being unbiased
and/or accurate. The bias introduced by these inputs, along
with the uncertainty associated with model error, the lineari-
sation of non-linear processes and omitted and unresolved
variables and processes, all contribute to the model error. The
extensive use of AQ models for AQ assessment and planning
is equally important, and requires a good knowledge of the
model capabilities and deficiencies that would allow for a
more educated use of the modelling systems and their results.

Recently, the AQMEII (Air Quality Model Evaluation In-
ternational Initiative) activity (Rao et al., 2011) applied the
approach proposed by Dennis et al. (2010), by organising
model evaluation activities (AQMEII 1, 2 and 3) using oper-
ational (Solazzo et al., 2012a, b, 2013a; Im et al., 2015a, b),
probabilistic (Solazzo et al., 2013b; Kioutsioukis and Gal-
marini, 2014) and diagnostic (Hogrefe et al., 2014; Makar et
al., 2015) evaluation frameworks.

The study we present here follows and complements the
previous investigations based on the AQMEII models col-
lected in the first and second phases of the activity (AQMEII1
and AQMEII2). The main aim is to introduce a novel method
that combines operational and diagnostic evaluations. This
method helps apportion the model error to its components,
thereby identifying the space/timescale at which it is most
relevant and, when possible, to infer which process/es could
have generated it. This work is designed to support the anal-
ysis of the currently ongoing third phase of the AQMEII ac-
tivity (Galmarini et al., 2015).

2 Mean square error as a comprehensive metric

For the model evaluation strategy proposed, we start by
breaking down the mean square error (MSE) (used here as
unique metric to evaluate model performance) into the sum
of the variance (and covariance) and the squared bias. The er-
ror and its components are then calculated on the spectrally
decomposed time series of modelled and observed hourly
ozone mixing ratios. The advantage of this evaluation strat-
egy is 2-fold:

– With respect to a conventional operational evaluation,
the new method allows for a more detailed assessment
of the distance between model results and observations
given the breakdown of the error into bias, variance and
covariance and their associated interpretations.

– Decomposing the MSE into spectral signals allows for
the precise identification of where each portion of the
model error predominantly occurs. Given that specific
processes are associated with specific scales, the appor-
tionment of the error components to their relevant scales
helps to more precisely identify which processes de-
scribed in the model could be responsible for the error.
Information about the nature of the error and the class of
process can significantly help modellers and developers
to improve model performance.

The data used are produced by the modelling communities
participating in AQMEII1 and AQMEII2 over the European
(EU) and North American (NA) continental-scale domains
for the years 2006 (AQMEII1) and 2010 (AQMEII2).

2.1 Error decomposition

The MSE is the squared difference of the modelled (mod)
and observed (obs) values:

MSE = E(mod-obs)2 =
Pnt

i=1(modi � obsi )
2

nt
, (1)

where E(·) denotes expectation and nt is the length of the
time series. The bias is

bias = E(mod-obs) (2)

i.e. bias = mod�obs. Thus, the following relationship holds:

MSE = var(mod-obs) + bias2, (3)

which is a well-known property of the MSE, (var(·) is the
variance operator). By using the property of the variance for
correlated fields:

var(mod-obs) = var(mod) + var(obs) � 2cov(mod,obs), (4)

the final formulation for the MSE components reads as fol-
lows:

MSE = bias2 + var(mod) + var(obs) � 2cov(mod,obs), (5)

Atmos. Chem. Phys., 16, 6263–6283, 2016 www.atmos-chem-phys.net/16/6263/2016/

6264 E. Solazzo and S. Galmarini: Error apportionment for atmospheric chemistry-transport models

developers to help make model improvements, and (iii) sets
the basis for the probabilistic evaluation (Fig. 1 of Dennis et
al., 2010).

Over the years, and despite the increasing relevance of
modelling systems for AQ applications, model evaluation
continues to rely almost exclusively on operational evalua-
tion, which basically involves gauging the model’s perfor-
mance using distance, variability and associativity metrics.
This common practice has little or no impact on model im-
provement, as it does not target the source of the modelling
error and does not discriminate between the reasons for ap-
propriate or inappropriate performance.

Such a requirement is even more pressing these days, with
current state-of-the-science AQ modelling systems account-
ing for an increasing number of coupled physical processes
and being described using hundreds of modules, which are
the result of decades of targeted and, generally, independent
investigations. Furthermore, AQ modelling systems typically
depend on external sources for the inputs of meteorology and
emissions data, as well as for boundary conditions. These
fields are generally produced by other models (which, in
turn, depend on external sources for initial and/or boundary
conditions) and, after substantial processing, are used by the
AQ modelling systems with no guarantee of being unbiased
and/or accurate. The bias introduced by these inputs, along
with the uncertainty associated with model error, the lineari-
sation of non-linear processes and omitted and unresolved
variables and processes, all contribute to the model error. The
extensive use of AQ models for AQ assessment and planning
is equally important, and requires a good knowledge of the
model capabilities and deficiencies that would allow for a
more educated use of the modelling systems and their results.

Recently, the AQMEII (Air Quality Model Evaluation In-
ternational Initiative) activity (Rao et al., 2011) applied the
approach proposed by Dennis et al. (2010), by organising
model evaluation activities (AQMEII 1, 2 and 3) using oper-
ational (Solazzo et al., 2012a, b, 2013a; Im et al., 2015a, b),
probabilistic (Solazzo et al., 2013b; Kioutsioukis and Gal-
marini, 2014) and diagnostic (Hogrefe et al., 2014; Makar et
al., 2015) evaluation frameworks.

The study we present here follows and complements the
previous investigations based on the AQMEII models col-
lected in the first and second phases of the activity (AQMEII1
and AQMEII2). The main aim is to introduce a novel method
that combines operational and diagnostic evaluations. This
method helps apportion the model error to its components,
thereby identifying the space/timescale at which it is most
relevant and, when possible, to infer which process/es could
have generated it. This work is designed to support the anal-
ysis of the currently ongoing third phase of the AQMEII ac-
tivity (Galmarini et al., 2015).

2 Mean square error as a comprehensive metric

For the model evaluation strategy proposed, we start by
breaking down the mean square error (MSE) (used here as
unique metric to evaluate model performance) into the sum
of the variance (and covariance) and the squared bias. The er-
ror and its components are then calculated on the spectrally
decomposed time series of modelled and observed hourly
ozone mixing ratios. The advantage of this evaluation strat-
egy is 2-fold:

– With respect to a conventional operational evaluation,
the new method allows for a more detailed assessment
of the distance between model results and observations
given the breakdown of the error into bias, variance and
covariance and their associated interpretations.

– Decomposing the MSE into spectral signals allows for
the precise identification of where each portion of the
model error predominantly occurs. Given that specific
processes are associated with specific scales, the appor-
tionment of the error components to their relevant scales
helps to more precisely identify which processes de-
scribed in the model could be responsible for the error.
Information about the nature of the error and the class of
process can significantly help modellers and developers
to improve model performance.

The data used are produced by the modelling communities
participating in AQMEII1 and AQMEII2 over the European
(EU) and North American (NA) continental-scale domains
for the years 2006 (AQMEII1) and 2010 (AQMEII2).

2.1 Error decomposition

The MSE is the squared difference of the modelled (mod)
and observed (obs) values:

MSE = E(mod-obs)2 =
Pnt

i=1(modi � obsi )
2

nt
, (1)

where E(·) denotes expectation and nt is the length of the
time series. The bias is

bias = E(mod-obs) (2)

i.e. bias = mod�obs. Thus, the following relationship holds:

MSE = var(mod-obs) + bias2, (3)

which is a well-known property of the MSE, (var(·) is the
variance operator). By using the property of the variance for
correlated fields:

var(mod-obs) = var(mod) + var(obs) � 2cov(mod,obs), (4)

the final formulation for the MSE components reads as fol-
lows:

MSE = bias2 + var(mod) + var(obs) � 2cov(mod,obs), (5)
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where the covariance term (last term on the right-hand side
of Eq. 5) accounts for the degree of correlation between the
modelled and observed time series. When the covariance
term is zero, var(obs) is referred to as the incompressible
part of the error and represents the lowest limit that the
MSE of the model can achieve. When dealing with model
evaluation, the modelled and observed time series are
typically highly correlated and therefore, within the limits
of the perfect match (correlation coefficient of unity),
cov(mod,obs) = cov(obs,obs) = cov(mod,mod) = var(mod)
= var(obs) and the MSE can be reduced to only the bias
term. That implies that the development of a high-quality
model needs to ensure

a. the highest possible precision in order to maximise the
cov(mod, obs) term;

b. the highest possible accuracy, in order to minimise the
bias.

Elaborating on Eq. (5), Theil (1961) derived the following:

MSE =(mod � obs)2 + (�mod � �obs)
2

+ 2(1 � r)�mod�obs. (6)

In Eq. (6), the variance term is expressed as the differ-
ence between the standard deviation of the model and that of
the observations, and the covariance term (last term on the
right) includes r , the coefficient of correlation between the
observed and modelled time series. The ratios of the three
terms on the right-hand side of Eq. (6) to the overall MSE are
known as Theil’s coefficients (Pindick and Rubinfeld, 1998).
Murphy (1988) provided examples of the scores that can be
developed using the components of the MSE.

The bias measures the departure of the modelled from the
observed results, and is a measure of systematic error, since
it measures the extent to which the average modelled val-
ues deviate from the observed ones. The bias is commonly
used to express the degree of “trueness”, i.e. “the closeness of
agreement between the average value obtained from a large
series of measurements and the true value” (Johnson, 2008).
The variance shows whether the modelled variability is com-
patible with that observed. Finally, the covariance term rep-
resents the unexplained proportion of the MSE due to the
remaining unsystematic errors; i.e. it represents the remain-
ing error after deviations from the mean values have been ac-
counted for. This latter term is a measure of the lack of corre-
lation of the model with comparable observations, and is con-
sidered the least “worrisome” portion of the error (Pindick
and Rubinfeld, 1998).

Aiming at minimising the MSE, the only controlled vari-
ables in Eq. (6) are mod and �mod, and differentiating with
respect to them yields the conditions that minimise the MSE:

8
>>><

>>>:

@MSE
@mod

= 2
�
mod � obs

�
= 0

@MSE
@�mod

= 2(�m � �obs) + 2(1 � r)�obs = 0

i.e. the best agreement between modelled and observed val-
ues is achieved by
⇢

mod = obs
�m = r�obs

, (7)

which analytically corresponds to the aforementioned items
(a) and (b). By inserting Eq. (7) into Eq. (6), the minimum
achievable MSE (mMSE) is

mMSE = � 2
obs(1 � r2), (8)

which is the unexplained portion of the error, as it reflects the
share of observed variance that is not explained by the model
(r2 is the coefficient of determination). The presence of an
unexplained part of the error suggests a modification of the
MSE decomposition in Eq. (6) in such a way as to explicitly
include mMSE:

MSE =
�
mod � obs

�2 + (�mod � r�obs)
2 + mMSE. (9)

The decompositions in Eqs. (5), (6) and (9) contain all the
relevant operational metrics usually applied to score mod-
elling systems (bias, variance, correlation coefficient), and
therefore prove to be a compact estimator of accuracy (bias),
precision (variance) and associativity (unexplained portion
through the correlation coefficient). Eq. (9) has been explic-
itly derived in this study to help evaluate AQ models.

Ideally, the entire error should be attributable to unsys-
tematic fluctuations. From a model development perspective,
the variance and covariance are possibly more revealing of
model deficiencies than is the bias term, as they are pro-
duced by the AQ model itself, while the bias is also due to
external sources (e.g. emissions, boundary conditions). From
the application viewpoint, however, it is the overall error that
counts, which is mostly made up of the bias.

2.2 Spectral decomposition of modelled and observed
time series

Hourly time series of (modelled and observed) ozone con-
centrations have been decomposed using an iterative mov-
ing average approach known as the Kolmogorov–Zurbenko
(kz) low-pass filter (Zurbenko, 1986), whose applications to
ozone are vastly documented in the literature (Rao et al.,
1997; Wise and Comrie, 2005; Hogrefe et al., 2000, 2014;
Galmarini et al., 2013; Kang et al., 2013; Solazzo and Gal-
marini, 2015). The kz filter depends on two parameters: the
length of the moving average window m and the number of

www.atmos-chem-phys.net/16/6263/2016/ Atmos. Chem. Phys., 16, 6263–6283, 2016
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mMSE is the minimum achievable Mean Square Error:
mMSE = s2

obs(1-r2)

Solazzo and Galmarini suggest:
MSE = (<mod> - <obs>)2 + (smod - rsobs)2 + mMSE

As this metric allows for quantification of accuracy (bias), 
precision (variance) and associativity (unexplained portion 
through the correlation coefficient – r) 

Approaches to evaluation:
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Figure 5. As in Figure 3 but for the EU models of AQMEII2 
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This study presents a novel approach to model evaluation, and aims to combine standard 422 

operational statistics with the time allocation of the component error. The methodology we 423 

propose tackles the issue of diagnostic evaluation from the angle of the spectral 424 

decomposition and error breakdown of model/data signals, introducing a compact operator 425 

for the quantification of bias, variance, and the correlation coefficient. 426 

When the analytical decomposition of the error into bias, variance and mMSE is applied to 427 

the decomposition of the signals into long-term, synoptic, inter-diurnal and diurnal 428 

components, information can be gathered that helps reduce the spectrum of possible 429 

sources of errors and pinpoint the processes that are most active at a particular scale which 430 

need to be improved. The procedure is denoted here as error apportionment and provides 431 

an improved and more powerful capacity to identify the nature of the error and associate it 432 

with a specific part of the spectrum of the model/measurement signal. The AQMEII set of 433 

models and measurements have been used in the evaluation procedure. 434 

After analysing the ozone concentrations gathered in the two phases of AQMEII, which 435 

cover a number of modelling systems in two different years and geographical areas, we 436 

conclude that:  437 

- The bias component of the error is by far the most important source of error, and is 438 

mainly associated with long-term processes and/or input fields (likely emissions data 439 

or boundary conditions). With regard to the model application, any effort to improve 440 

the current capabilities of AQ modelling systems are likely to have little practical 441 

impact if this primary issue is not addressed and solved; 442 

- Most relevant to model development, the variance error (the discrepancy between 443 

modelled and observed variance) is mainly associated with the DU component. At 444 

timescale of 1-2 days, the complexity of modelling systems increases substantially 445 

and many processes are involved; the fact that the variance error of the DU 446 

component for the AQMEII2 runs is reduced with respect to the AQMEII1 runs might 447 

indicate the benefits of including feedback in the models. Such a conclusion could 448 

not be drawn with simpler operational evaluation strategies; 449 

- The limited magnitude of the variability of the SY and LT signals produces little 450 

variance errors for these two components, and only becomes comparable to the LT 451 

or DU error when the bias is negligible or the total MSE is small; 452 

- The mMSE error is predominant in some instances of the analysed models, and is 453 

due to the random distribution of modelled values. There are many causes of mMSE 454 

error, including all   ‘internal’   processes   that  produce  non-systematic errors such as 455 

noise, representativeness, the linearisation of non-linear process, and turbulence 456 

closure;   457 

- The analysis of the spatial distribution of the error highlights the diversity in the 458 

behaviour of each modelling system. The common spatial structures of the LT error 459 

(for example in the central and southern EU) may reveal common sources of error 460 
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where the covariance term (last term on the right-hand side
of Eq. 5) accounts for the degree of correlation between the
modelled and observed time series. When the covariance
term is zero, var(obs) is referred to as the incompressible
part of the error and represents the lowest limit that the
MSE of the model can achieve. When dealing with model
evaluation, the modelled and observed time series are
typically highly correlated and therefore, within the limits
of the perfect match (correlation coefficient of unity),
cov(mod,obs) = cov(obs,obs) = cov(mod,mod) = var(mod)
= var(obs) and the MSE can be reduced to only the bias
term. That implies that the development of a high-quality
model needs to ensure

a. the highest possible precision in order to maximise the
cov(mod, obs) term;

b. the highest possible accuracy, in order to minimise the
bias.

Elaborating on Eq. (5), Theil (1961) derived the following:

MSE =(mod � obs)2 + (�mod � �obs)
2

+ 2(1 � r)�mod�obs. (6)

In Eq. (6), the variance term is expressed as the differ-
ence between the standard deviation of the model and that of
the observations, and the covariance term (last term on the
right) includes r , the coefficient of correlation between the
observed and modelled time series. The ratios of the three
terms on the right-hand side of Eq. (6) to the overall MSE are
known as Theil’s coefficients (Pindick and Rubinfeld, 1998).
Murphy (1988) provided examples of the scores that can be
developed using the components of the MSE.

The bias measures the departure of the modelled from the
observed results, and is a measure of systematic error, since
it measures the extent to which the average modelled val-
ues deviate from the observed ones. The bias is commonly
used to express the degree of “trueness”, i.e. “the closeness of
agreement between the average value obtained from a large
series of measurements and the true value” (Johnson, 2008).
The variance shows whether the modelled variability is com-
patible with that observed. Finally, the covariance term rep-
resents the unexplained proportion of the MSE due to the
remaining unsystematic errors; i.e. it represents the remain-
ing error after deviations from the mean values have been ac-
counted for. This latter term is a measure of the lack of corre-
lation of the model with comparable observations, and is con-
sidered the least “worrisome” portion of the error (Pindick
and Rubinfeld, 1998).

Aiming at minimising the MSE, the only controlled vari-
ables in Eq. (6) are mod and �mod, and differentiating with
respect to them yields the conditions that minimise the MSE:

8
>>><

>>>:

@MSE
@mod

= 2
�
mod � obs

�
= 0

@MSE
@�mod

= 2(�m � �obs) + 2(1 � r)�obs = 0

i.e. the best agreement between modelled and observed val-
ues is achieved by
⇢

mod = obs
�m = r�obs

, (7)

which analytically corresponds to the aforementioned items
(a) and (b). By inserting Eq. (7) into Eq. (6), the minimum
achievable MSE (mMSE) is

mMSE = � 2
obs(1 � r2), (8)

which is the unexplained portion of the error, as it reflects the
share of observed variance that is not explained by the model
(r2 is the coefficient of determination). The presence of an
unexplained part of the error suggests a modification of the
MSE decomposition in Eq. (6) in such a way as to explicitly
include mMSE:

MSE =
�
mod � obs

�2 + (�mod � r�obs)
2 + mMSE. (9)

The decompositions in Eqs. (5), (6) and (9) contain all the
relevant operational metrics usually applied to score mod-
elling systems (bias, variance, correlation coefficient), and
therefore prove to be a compact estimator of accuracy (bias),
precision (variance) and associativity (unexplained portion
through the correlation coefficient). Eq. (9) has been explic-
itly derived in this study to help evaluate AQ models.

Ideally, the entire error should be attributable to unsys-
tematic fluctuations. From a model development perspective,
the variance and covariance are possibly more revealing of
model deficiencies than is the bias term, as they are pro-
duced by the AQ model itself, while the bias is also due to
external sources (e.g. emissions, boundary conditions). From
the application viewpoint, however, it is the overall error that
counts, which is mostly made up of the bias.

2.2 Spectral decomposition of modelled and observed
time series

Hourly time series of (modelled and observed) ozone con-
centrations have been decomposed using an iterative mov-
ing average approach known as the Kolmogorov–Zurbenko
(kz) low-pass filter (Zurbenko, 1986), whose applications to
ozone are vastly documented in the literature (Rao et al.,
1997; Wise and Comrie, 2005; Hogrefe et al., 2000, 2014;
Galmarini et al., 2013; Kang et al., 2013; Solazzo and Gal-
marini, 2015). The kz filter depends on two parameters: the
length of the moving average window m and the number of
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where the covariance term (last term on the right-hand side
of Eq. 5) accounts for the degree of correlation between the
modelled and observed time series. When the covariance
term is zero, var(obs) is referred to as the incompressible
part of the error and represents the lowest limit that the
MSE of the model can achieve. When dealing with model
evaluation, the modelled and observed time series are
typically highly correlated and therefore, within the limits
of the perfect match (correlation coefficient of unity),
cov(mod,obs) = cov(obs,obs) = cov(mod,mod) = var(mod)
= var(obs) and the MSE can be reduced to only the bias
term. That implies that the development of a high-quality
model needs to ensure

a. the highest possible precision in order to maximise the
cov(mod, obs) term;

b. the highest possible accuracy, in order to minimise the
bias.

Elaborating on Eq. (5), Theil (1961) derived the following:

MSE =(mod � obs)2 + (�mod � �obs)
2

+ 2(1 � r)�mod�obs. (6)

In Eq. (6), the variance term is expressed as the differ-
ence between the standard deviation of the model and that of
the observations, and the covariance term (last term on the
right) includes r , the coefficient of correlation between the
observed and modelled time series. The ratios of the three
terms on the right-hand side of Eq. (6) to the overall MSE are
known as Theil’s coefficients (Pindick and Rubinfeld, 1998).
Murphy (1988) provided examples of the scores that can be
developed using the components of the MSE.

The bias measures the departure of the modelled from the
observed results, and is a measure of systematic error, since
it measures the extent to which the average modelled val-
ues deviate from the observed ones. The bias is commonly
used to express the degree of “trueness”, i.e. “the closeness of
agreement between the average value obtained from a large
series of measurements and the true value” (Johnson, 2008).
The variance shows whether the modelled variability is com-
patible with that observed. Finally, the covariance term rep-
resents the unexplained proportion of the MSE due to the
remaining unsystematic errors; i.e. it represents the remain-
ing error after deviations from the mean values have been ac-
counted for. This latter term is a measure of the lack of corre-
lation of the model with comparable observations, and is con-
sidered the least “worrisome” portion of the error (Pindick
and Rubinfeld, 1998).

Aiming at minimising the MSE, the only controlled vari-
ables in Eq. (6) are mod and �mod, and differentiating with
respect to them yields the conditions that minimise the MSE:

8
>>><

>>>:

@MSE
@mod

= 2
�
mod � obs

�
= 0

@MSE
@�mod

= 2(�m � �obs) + 2(1 � r)�obs = 0

i.e. the best agreement between modelled and observed val-
ues is achieved by
⇢

mod = obs
�m = r�obs

, (7)

which analytically corresponds to the aforementioned items
(a) and (b). By inserting Eq. (7) into Eq. (6), the minimum
achievable MSE (mMSE) is

mMSE = � 2
obs(1 � r2), (8)

which is the unexplained portion of the error, as it reflects the
share of observed variance that is not explained by the model
(r2 is the coefficient of determination). The presence of an
unexplained part of the error suggests a modification of the
MSE decomposition in Eq. (6) in such a way as to explicitly
include mMSE:

MSE =
�
mod � obs

�2 + (�mod � r�obs)
2 + mMSE. (9)

The decompositions in Eqs. (5), (6) and (9) contain all the
relevant operational metrics usually applied to score mod-
elling systems (bias, variance, correlation coefficient), and
therefore prove to be a compact estimator of accuracy (bias),
precision (variance) and associativity (unexplained portion
through the correlation coefficient). Eq. (9) has been explic-
itly derived in this study to help evaluate AQ models.

Ideally, the entire error should be attributable to unsys-
tematic fluctuations. From a model development perspective,
the variance and covariance are possibly more revealing of
model deficiencies than is the bias term, as they are pro-
duced by the AQ model itself, while the bias is also due to
external sources (e.g. emissions, boundary conditions). From
the application viewpoint, however, it is the overall error that
counts, which is mostly made up of the bias.

2.2 Spectral decomposition of modelled and observed
time series

Hourly time series of (modelled and observed) ozone con-
centrations have been decomposed using an iterative mov-
ing average approach known as the Kolmogorov–Zurbenko
(kz) low-pass filter (Zurbenko, 1986), whose applications to
ozone are vastly documented in the literature (Rao et al.,
1997; Wise and Comrie, 2005; Hogrefe et al., 2000, 2014;
Galmarini et al., 2013; Kang et al., 2013; Solazzo and Gal-
marini, 2015). The kz filter depends on two parameters: the
length of the moving average window m and the number of
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iterations k(kzm,k). Since the kz is a low-pass filter, the fil-
tered time series consists of the low-frequency fluctuating
component, while the difference between two filtered time
series provides a band-pass filter. This latter property is used
to decompose the ozone concentration time series as

O3 = LT(O3) + SY(O3) + DU(O3) + ID(O3), (10)

where LT is the long-term component (periods longer than
21 days), SY is the synoptic component (weather processes
that last between 2.5 and 21 days), DU is the diurnal compo-
nent (day/night alternation period between 0.5 and 2.5 days)
and ID is the intra-day component accounting for fast-acting
processes (less than 12 h). The decomposition presented in
Eq. (10) is such that the original time series is perfectly re-
turned by the summation of the components (see Appendix A
for details). Dealing with 1 year of data, any filter longer
than the LT component would not be meaningful. The pe-
riods of the components correspond to well-defined peaks
in the power spectrum of ozone, e.g. as detailed in Rao et
al. (1997) and Hogrefe et al. (2000).

The LT component is the baseline and incorporates the
bias of the original (un-decomposed time series. The other
components (SY, DU and ID) are zero-mean fluctuations
around the LT time series and are therefore unbiased. The
band-pass nature of the SY, DU and ID components is such
that they only account for the processes occurring in the time
window the filter allows the signal to “pass”. For instance, the
DU component is insensitive to processes outside the range
of 0.5 to 2.5 days.

Further properties of the spectrally decomposed ozone
time series of AQMEII derived by Galmarini et al. (2013),
Hogrefe et al. (2014) and Solazzo and Galmarini (2015) are
as follows:

– The DU component accounts for more than half of the
total variance, followed by the LT and SY components.

– The ID component has the smallest influence due to the
small amplitude of its fluctuations.

– The variance of the spectral component is neither
strongly nor systematically associated with the area-
type of the monitoring stations (i.e. rural, urban, sub-
urban).

– Due to the bias, most of the error is accounted for by the
LT component, followed by the DU component. The ID
contributes very little to the overall MSE.

Further important technicalities of the spectral decompo-
sition, including a method to estimate the contribution of the
spectral cross-components (the overlapping regions of the
power spectrum) to the total error, are reported in the Ap-
pendix A.

The signal decomposition of Eq. (10) is applied to the
full-year time series. However, to evaluate the model per-
formance with regard to ozone, the analysis is restricted to

the months of May to September, i.e. when the production of
ozone due to photochemistry is most relevant.

3 Data and models used

The observational data set derived from the surface AQ mon-
itoring networks operating in the EU and NA constitutes the
same data set used in the first and second phases of AQMEII
to support model evaluation. Only stations with over 75 %
valid records for the whole periods and located at altitudes
below 1000 m have been used for this analysis. Details of
the modelled regions and number of receptor stations are re-
ported in Table 1.

Since the main scope of this study is to introduce the error
apportionment methodology (rather than to strictly evaluate
the models), the analysis is presented for continental areas for
convenience and easier display of the results. However, given
the size of the domains and the heterogeneity of climatic and
emission conditions, dedicated analyses for three sub-regions
in both continents are proposed in the Supplement (Figs. S1
to S3).

There are profound differences between the modelling
systems that participated in AQMEII1 and AQMEII2. The
two sets of models have been applied to different years (2006
for phase 1 and 2010 for phase 2) and are therefore dissimi-
lar with respect to the input data of emissions and boundary
conditions for chemistry. The AQ models of the second phase
are coupled (online chemistry feedbacks on meteorology),
while those of the first phase are not. The effect of using on-
line models for simulating ozone accounts for the impact of
aerosols on radiation and therefore on temperature and pho-
tolysis rates (Baklanov et al., 2014).

The model settings and input data for phase I are described
in Solazzo et al. (2012a, b, 2013a), Schere et al. (2012) and
Pouliot et al. (2012); for phase II, similar information is pre-
sented in Im et al. (2015a, b), Brunner et al. (2015) and
Pouliot et al. (2015).

Table 2 summarises the features of the modelling systems
analysed in this study with regard to ozone concentrations
in the EU or NA. The modelling contribution to the two
phases of AQMEII consists of 12 and 9 models and of 8 and
3 models for EU and NA, respectively. Solazzo et al. (2012a,
2013b) showed the existence of a subset of models, whose
ensemble mean, MSEbest, optimises the accuracy (minimum
error over all possible ensemble mean combinations). The
set and number of models composing MSEbest varies by pol-
lutant and, for the same pollutant, by the examined period
(year, season, etc.). In this study MSEbest is identified for the
continent-wide-averaged time series of ozone concentration
and for the un-decomposed ozone time series (i.e. not spec-
trally decomposed) during the period May–September. There
are circumstances where a single model outscores any com-
bination of models. In such cases the MSEbest is identified
with the best single model.
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where the covariance term (last term on the right-hand side
of Eq. 5) accounts for the degree of correlation between the
modelled and observed time series. When the covariance
term is zero, var(obs) is referred to as the incompressible
part of the error and represents the lowest limit that the
MSE of the model can achieve. When dealing with model
evaluation, the modelled and observed time series are
typically highly correlated and therefore, within the limits
of the perfect match (correlation coefficient of unity),
cov(mod,obs) = cov(obs,obs) = cov(mod,mod) = var(mod)
= var(obs) and the MSE can be reduced to only the bias
term. That implies that the development of a high-quality
model needs to ensure

a. the highest possible precision in order to maximise the
cov(mod, obs) term;

b. the highest possible accuracy, in order to minimise the
bias.

Elaborating on Eq. (5), Theil (1961) derived the following:

MSE =(mod � obs)2 + (�mod � �obs)
2

+ 2(1 � r)�mod�obs. (6)

In Eq. (6), the variance term is expressed as the differ-
ence between the standard deviation of the model and that of
the observations, and the covariance term (last term on the
right) includes r , the coefficient of correlation between the
observed and modelled time series. The ratios of the three
terms on the right-hand side of Eq. (6) to the overall MSE are
known as Theil’s coefficients (Pindick and Rubinfeld, 1998).
Murphy (1988) provided examples of the scores that can be
developed using the components of the MSE.

The bias measures the departure of the modelled from the
observed results, and is a measure of systematic error, since
it measures the extent to which the average modelled val-
ues deviate from the observed ones. The bias is commonly
used to express the degree of “trueness”, i.e. “the closeness of
agreement between the average value obtained from a large
series of measurements and the true value” (Johnson, 2008).
The variance shows whether the modelled variability is com-
patible with that observed. Finally, the covariance term rep-
resents the unexplained proportion of the MSE due to the
remaining unsystematic errors; i.e. it represents the remain-
ing error after deviations from the mean values have been ac-
counted for. This latter term is a measure of the lack of corre-
lation of the model with comparable observations, and is con-
sidered the least “worrisome” portion of the error (Pindick
and Rubinfeld, 1998).

Aiming at minimising the MSE, the only controlled vari-
ables in Eq. (6) are mod and �mod, and differentiating with
respect to them yields the conditions that minimise the MSE:

8
>>><

>>>:

@MSE
@mod

= 2
�
mod � obs

�
= 0

@MSE
@�mod

= 2(�m � �obs) + 2(1 � r)�obs = 0

i.e. the best agreement between modelled and observed val-
ues is achieved by
⇢

mod = obs
�m = r�obs

, (7)

which analytically corresponds to the aforementioned items
(a) and (b). By inserting Eq. (7) into Eq. (6), the minimum
achievable MSE (mMSE) is

mMSE = � 2
obs(1 � r2), (8)

which is the unexplained portion of the error, as it reflects the
share of observed variance that is not explained by the model
(r2 is the coefficient of determination). The presence of an
unexplained part of the error suggests a modification of the
MSE decomposition in Eq. (6) in such a way as to explicitly
include mMSE:

MSE =
�
mod � obs

�2 + (�mod � r�obs)
2 + mMSE. (9)

The decompositions in Eqs. (5), (6) and (9) contain all the
relevant operational metrics usually applied to score mod-
elling systems (bias, variance, correlation coefficient), and
therefore prove to be a compact estimator of accuracy (bias),
precision (variance) and associativity (unexplained portion
through the correlation coefficient). Eq. (9) has been explic-
itly derived in this study to help evaluate AQ models.

Ideally, the entire error should be attributable to unsys-
tematic fluctuations. From a model development perspective,
the variance and covariance are possibly more revealing of
model deficiencies than is the bias term, as they are pro-
duced by the AQ model itself, while the bias is also due to
external sources (e.g. emissions, boundary conditions). From
the application viewpoint, however, it is the overall error that
counts, which is mostly made up of the bias.

2.2 Spectral decomposition of modelled and observed
time series

Hourly time series of (modelled and observed) ozone con-
centrations have been decomposed using an iterative mov-
ing average approach known as the Kolmogorov–Zurbenko
(kz) low-pass filter (Zurbenko, 1986), whose applications to
ozone are vastly documented in the literature (Rao et al.,
1997; Wise and Comrie, 2005; Hogrefe et al., 2000, 2014;
Galmarini et al., 2013; Kang et al., 2013; Solazzo and Gal-
marini, 2015). The kz filter depends on two parameters: the
length of the moving average window m and the number of
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iterations k(kzm,k). Since the kz is a low-pass filter, the fil-
tered time series consists of the low-frequency fluctuating
component, while the difference between two filtered time
series provides a band-pass filter. This latter property is used
to decompose the ozone concentration time series as

O3 = LT(O3) + SY(O3) + DU(O3) + ID(O3), (10)

where LT is the long-term component (periods longer than
21 days), SY is the synoptic component (weather processes
that last between 2.5 and 21 days), DU is the diurnal compo-
nent (day/night alternation period between 0.5 and 2.5 days)
and ID is the intra-day component accounting for fast-acting
processes (less than 12 h). The decomposition presented in
Eq. (10) is such that the original time series is perfectly re-
turned by the summation of the components (see Appendix A
for details). Dealing with 1 year of data, any filter longer
than the LT component would not be meaningful. The pe-
riods of the components correspond to well-defined peaks
in the power spectrum of ozone, e.g. as detailed in Rao et
al. (1997) and Hogrefe et al. (2000).

The LT component is the baseline and incorporates the
bias of the original (un-decomposed time series. The other
components (SY, DU and ID) are zero-mean fluctuations
around the LT time series and are therefore unbiased. The
band-pass nature of the SY, DU and ID components is such
that they only account for the processes occurring in the time
window the filter allows the signal to “pass”. For instance, the
DU component is insensitive to processes outside the range
of 0.5 to 2.5 days.

Further properties of the spectrally decomposed ozone
time series of AQMEII derived by Galmarini et al. (2013),
Hogrefe et al. (2014) and Solazzo and Galmarini (2015) are
as follows:

– The DU component accounts for more than half of the
total variance, followed by the LT and SY components.

– The ID component has the smallest influence due to the
small amplitude of its fluctuations.

– The variance of the spectral component is neither
strongly nor systematically associated with the area-
type of the monitoring stations (i.e. rural, urban, sub-
urban).

– Due to the bias, most of the error is accounted for by the
LT component, followed by the DU component. The ID
contributes very little to the overall MSE.

Further important technicalities of the spectral decompo-
sition, including a method to estimate the contribution of the
spectral cross-components (the overlapping regions of the
power spectrum) to the total error, are reported in the Ap-
pendix A.

The signal decomposition of Eq. (10) is applied to the
full-year time series. However, to evaluate the model per-
formance with regard to ozone, the analysis is restricted to

the months of May to September, i.e. when the production of
ozone due to photochemistry is most relevant.

3 Data and models used

The observational data set derived from the surface AQ mon-
itoring networks operating in the EU and NA constitutes the
same data set used in the first and second phases of AQMEII
to support model evaluation. Only stations with over 75 %
valid records for the whole periods and located at altitudes
below 1000 m have been used for this analysis. Details of
the modelled regions and number of receptor stations are re-
ported in Table 1.

Since the main scope of this study is to introduce the error
apportionment methodology (rather than to strictly evaluate
the models), the analysis is presented for continental areas for
convenience and easier display of the results. However, given
the size of the domains and the heterogeneity of climatic and
emission conditions, dedicated analyses for three sub-regions
in both continents are proposed in the Supplement (Figs. S1
to S3).

There are profound differences between the modelling
systems that participated in AQMEII1 and AQMEII2. The
two sets of models have been applied to different years (2006
for phase 1 and 2010 for phase 2) and are therefore dissimi-
lar with respect to the input data of emissions and boundary
conditions for chemistry. The AQ models of the second phase
are coupled (online chemistry feedbacks on meteorology),
while those of the first phase are not. The effect of using on-
line models for simulating ozone accounts for the impact of
aerosols on radiation and therefore on temperature and pho-
tolysis rates (Baklanov et al., 2014).

The model settings and input data for phase I are described
in Solazzo et al. (2012a, b, 2013a), Schere et al. (2012) and
Pouliot et al. (2012); for phase II, similar information is pre-
sented in Im et al. (2015a, b), Brunner et al. (2015) and
Pouliot et al. (2015).

Table 2 summarises the features of the modelling systems
analysed in this study with regard to ozone concentrations
in the EU or NA. The modelling contribution to the two
phases of AQMEII consists of 12 and 9 models and of 8 and
3 models for EU and NA, respectively. Solazzo et al. (2012a,
2013b) showed the existence of a subset of models, whose
ensemble mean, MSEbest, optimises the accuracy (minimum
error over all possible ensemble mean combinations). The
set and number of models composing MSEbest varies by pol-
lutant and, for the same pollutant, by the examined period
(year, season, etc.). In this study MSEbest is identified for the
continent-wide-averaged time series of ozone concentration
and for the un-decomposed ozone time series (i.e. not spec-
trally decomposed) during the period May–September. There
are circumstances where a single model outscores any com-
bination of models. In such cases the MSEbest is identified
with the best single model.
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Figure 2. Lomb–Scargle periodogram spectra for surface O3 at Cabo Verde (16.51� N, 24.52� W) and Lompoc (34.73� N, 120.43� W),
between 2006 and 2012. The upper panels shows the observed data spectra together with chi-squared false-alarm levels for significant
periodicity based on linear piecewise fits to the spectra. The lower panels compare the spectra of the observations (black) and the GEOS-
Chem model (red).

Figure 3. Example of spectral superposition of the average, funda-
mental frequency and the harmonics for a frequency of interest.

sentative of the total periodic � 2. In the same way as it
was previously done, we take the fraction of the total pe-
riodic � 2 to the time series � 2. Removing the total peri-
odic waveform (including gaps) from the raw time series
gives a time series that is solely derived of the weather
and macroweather “noise”. The variances of these peri-
odic and noise time series are essentially additive so that
� 2(diurnal) + � 2(seasonal) + � 2(noise) = � 2(time series).

4 Application to observations

We apply these methods to an updated hourly version of the
long-term surface ozone data set from Sofen et al. (2016),
compiled for the task of model evaluation. The data set ap-
plies multiple stringent data quality checks: removing urban
sites, duplicate sites, coarse and partial year data, and obvi-
ous outliers. The data are originally drawn from the AirBase,
CAPMON, CASTNET, EANET, EMEP, EPA AQS, NAPS,
SEARCH, and WMO GAW monitoring networks (see Sofen
et al. (2016) and references therein for details), and for sim-
plicity we choose the period between 2005 and 2010 as this
represents the most comprehensively observed time period.
We exclude sites with data gaps of more than 365 days in
this period and additionally sites with data gaps greater than
60 days in 3 or more years. We additionally limit the sites
to be below 1.5 km from sea level. Figure 4 shows the loca-
tion of the 710 valid sites. Most of the sites are from the US
EPA AQS and EU AirBase data sets, which leads to an over
representation of northern continental mid-latitude locations
and an under representation of other areas of world.

We now investigate these observations in the context of the
Lomb–Scargle-derived diurnal and seasonal cycles.

4.1 Significance of seasonal and diurnal cycle

Figure 5 shows the fraction of the variance at each site that
is explained by the seasonal, diurnal, and the combined to-
tal periodic waveform. For most locations the seasonal cycle
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Figure 2. Lomb–Scargle periodogram spectra for surface O3 at Cabo Verde (16.51� N, 24.52� W) and Lompoc (34.73� N, 120.43� W),
between 2006 and 2012. The upper panels shows the observed data spectra together with chi-squared false-alarm levels for significant
periodicity based on linear piecewise fits to the spectra. The lower panels compare the spectra of the observations (black) and the GEOS-
Chem model (red).
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mental frequency and the harmonics for a frequency of interest.
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Abstract. Through the comparison of several regional-scale
chemistry transport modeling systems that simulate meteo-
rology and air quality over the European and North Ameri-
can continents, this study aims at (i) apportioning error to the
responsible processes using timescale analysis, (ii) helping
to detect causes of model error, and (iii) identifying the pro-
cesses and temporal scales most urgently requiring dedicated
investigations.

The analysis is conducted within the framework of the
third phase of the Air Quality Model Evaluation International
Initiative (AQMEII) and tackles model performance gauging
through measurement-to-model comparison, error decompo-
sition, and time series analysis of the models biases for sev-
eral fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind
speed, and temperature). The operational metrics (magnitude
of the error, sign of the bias, associativity) provide an overall
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Figure 9. RMSE (ppb) for CO by spectral component and season (panel a for Europe and b for North America). FT is the full (unfiltered)
time series, LT, SY, and DU are the long term, synoptic, and diurnal components, respectively.
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Figure 1. Subregions of the two continental domains (a) EU and (b) NA. Overlaid are the ozone monitoring stations classified based on the
network.

processes (Rao et al., 1997). The error apportionment applied
to each spectral component can provide indications on the
possible sources of error. The scope of the diagnostic evalu-
ation, as also highlighted by Gupta et al. (2009), is to move
beyond the usual aggregate metrics that only offer a statis-
tical interpretation towards the use of measures selected for
the quality of the information they can provide to model de-
velopers and users.

The evaluation of the AQMEII3 suite of model runs is car-
ried out for surface temperature (Temp), wind speed (WS)
and wind direction (WD), and for the species CO, NO, NO2,
ozone, SO2, PM10 (EU), and PM2.5 (NA). Additional analy-
ses making use of emission reduction scenarios (CO and NO)
and vertical profiles (Temp, WS, ozone) are also presented.

The main scope of the analysis is to present a detailed
overview of the skill of AQ models when compared with
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Figure 10. MSE (ppb2
) breakdown into bias squared, variance, and mMSE for the spectral components of the spatial average time series of

CO during the months of December, January, and February (DJF) based on Eq. (6). The bias is entirely accounted for by the LT component.
The signs within the bias and variance portion of the bars indicate model overestimation (+) or underestimation (�) of the bias and variance.
The color of the mMSE share of the error is coded based on the values of r , the correlation coefficient, according to the color scale at the
bottom of each plot. Top panel is EU; lower panel is NA. Similar plots for the other two subregions are reported in the Supplement.

subregions; it is approximately 3 times higher in winter than
in summer. The magnitude of the SY and DU errors is com-
parable (⇠ 15–25 ppb on average in EU1 and EU2, sensibly
higher in EU3). For NA (Fig. 9b) the DU and SY errors are
also similar, but they vary by model, subregion, and season.

The homogeneity of error in EU suggests that it originates
from a common source. Previous investigations (Innes et al.,
2013; Giordano et al., 2015) indicate that the boundary con-
ditions have a limited contribution to the bias of CO within
the interior of the domain where the emissions are far more
important. In particular, the MACC inventory used by the EU
regional models likely underestimates the CO emissions (es-
pecially in winter; Giordano et al., 2015). We conclude that

the cause of model bias for CO is most probably attributable
to the emissions and to a lesser extent the generally overes-
timated surface wind speed (Sect. 3.1.1). Sensitivity of the
model error to emission changes for CO is discussed in the
next section.

The correlation coefficient for EU generally peaks in
spring (LT component), while it is at a minimum for the LT
component in winter and is overall poor for the DU and SY
components. In contrast, for NA the minimum correlation co-
efficient is observed in spring and summer (LT component),
with the correlation for the DU component having a mixed
behavior depending on the subregion, but it is typically low
in summer (Table S5).
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Figure 1. Subregions of the two continental domains (a) EU and (b) NA. Overlaid are the ozone monitoring stations classified based on the
network.

processes (Rao et al., 1997). The error apportionment applied
to each spectral component can provide indications on the
possible sources of error. The scope of the diagnostic evalu-
ation, as also highlighted by Gupta et al. (2009), is to move
beyond the usual aggregate metrics that only offer a statis-
tical interpretation towards the use of measures selected for
the quality of the information they can provide to model de-
velopers and users.

The evaluation of the AQMEII3 suite of model runs is car-
ried out for surface temperature (Temp), wind speed (WS)
and wind direction (WD), and for the species CO, NO, NO2,
ozone, SO2, PM10 (EU), and PM2.5 (NA). Additional analy-
ses making use of emission reduction scenarios (CO and NO)
and vertical profiles (Temp, WS, ozone) are also presented.

The main scope of the analysis is to present a detailed
overview of the skill of AQ models when compared with
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Figure 14. As in Fig. 9 but for NO2.
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Figure 13. RMSE variation between the s20 % scenario (anthropogenic emission and boundary condition reduced by 20 %) and the base
case for anthropogenic NO (aNO) in EU2.

3.3.4 Sensitivity simulations with reduced emission and
boundary conditions

The analysis discussed in Sect. 3.3.2 is repeated here for NO
and results are presented in Fig. 13. A decrease by 20 % of
the amount of NO in the domain produces a variation of
RMSE of ⇠ 8 % (averaged over models and spectral compo-
nents). A naïve projection indicates that a reduction of 100 %
(thus removing the production of NO from emissions and
boundary conditions) would produce a variation of the er-
ror of ⇠ 35 %. Such an amount is less than that found for
CO (⇠ 50 %, Sect. 3.3.2), which is consistent with the pho-
tochemical processes involving NO but not CO.

The LT component is the most sensitive to changes for NO,
with an average of ⇠ 17 % error variation (and up to 20 %
in autumn, both positive and negative). Again, the SILAM
model is the most sensitive to changes in the amount of pol-
lutants entering the domain. Remarkable differences between
the s20 % scenario and the base case are detected for sum-
mer and autumn (LT error variation of 100 %; Fig. 13). The
improvement of the error of SILAM (and of the other mod-
els) for the s20 % scenario is due to the overestimation of NO
mean concentration in the base case (positive bias, Table S6).

3.3.5 NO2

Primary NO2 is emitted by a variety of combustion sources
and plays a major role in atmospheric reactions that pro-
duce ground-level ozone. NO2 is also a precursor to nitrates,
which contribute to PM formation. As for NO, only a small
portion of the total error is expected to stem from the bound-
ary conditions. The AQMEII3 modeling systems attribute a

fraction of NO2 emission ranging between 3 and 10 % of the
total NOx emissions (some models treat the NO2 emissions
from the transport sector differently; see Table 1). The results
of the error analysis discussed hereafter do not reveal group-
ing of model behavior consistent with the choice of the NO2-
to-NOx emission ratio though, considering the fast chemistry
between NO and NO2.

The RMSE distribution (Fig. 14a, b) shows a marked
model-to-model variability in the LT and DU components,
while it is more uniform for the SY component, also in
the seasonal stratification. Moreover, the error distribution
is shown to be weakly dependant on the specific subregion
(for both continents, especially for the DU component), sug-
gesting that regional features (e.g., differences in climate be-
tween the regions) have little impact on NO2 performance,
which is mostly affected by chemistry and error in the mete-
orology. Local-scale features (e.g., representation of urban–
rural emission differences) may still be important, but they
may have similar errors in all regions.

The largest error occurs in winter (both continents) and is
shared approximately equally between the SY and DU com-
ponents (for some models the SY and LT errors are compa-
rable due to the small bias).

The bias is the main contributor to the NO2 error and
stems from a model underprediction of the mean observed
concentration during the entire year (but, with the excep-
tion of the winter season, it is positive for WRF-CMAQ in
NA and WRF-CMAQ1 in EU; Table S7). The bias is prob-
ably caused by a combination of factors, including emission
estimates (e.g., underestimation of residential combustion),
PBL height and vertical mixing at night (when wood com-
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While the bias error for ozone is likely driven by error
in NOx emissions, the error in meteorology may factor
in determining the mMSE and variance error. In fact,
there are several models for which the bias of tempera-
ture and the bias of NO2 are strongly associated with the
DU error of ozone. A simple linear regression between
NOx bias and ozone bias (based on the yearly time se-
ries) among the EU models suggests that the NOx and
temperature biases can explain, on average, ⇠ 35 and
⇠ 16 % of the variability of the ozone bias, respectively.
Ongoing analyses are focusing on explaining the ori-
gin of the mMSE error by investigating the phase shift
between the modeled and observed DU and SY compo-
nents as well as focusing on looking at maximum daily
values rather than at the full time series.

– PM analysis (PM10 for Europe and PM2.5 for North
America) reveals that for Europe the error distribution
for DU and SY is homogeneous and season independent
among the models, despite the large numbers of model-
ing options and parameters characterizing the chemistry
and physics of particles. A common source of model
bias (model underestimation, especially in winter) for
PM10 likely lies in the emissions (missing sources) and
in the overestimation of surface wind speed, whereas
variance error may stem from PBL dynamics under sta-
ble conditions and missing processes in the model (SOA
formation is a known issue for all models). The analysis
of PM2.5 (based on two models only) shows an excess
of variance and low correlation coefficient in the DU
component, possibly due to the timing of the PM cycle.
Further analyses dealing with the PM components are
needed.

– The analysis of the memory of the ozone signal has
revealed a strong model deficit in continental Europe,
where the seasonal modulation of ozone is overesti-
mated by the majority of the models. The opposite holds
true in the continental US.

Although remarkable progress has been made since the first
phase of AQMEII, both in terms of model performance and
in terms of developing a more versatile and robust evalu-
ation procedure, results of AQ model evaluation and inter-
comparison remain generic since they fail to associate errors
with processes, or at least to narrow down the list of pro-
cesses responsible for model error. AQ models are meant to
be applicable to a variety of geographic (and topographic)
scenarios under almost any type of weather, season, and
emission conditions. For such a wide range of conditions the
inherent nonlinearity among processes is difficult to disen-
tangle, and specifically designed sensitivity runs seems to
be the only viable alternative. A model evaluation strategy
relying solely on the comparison of modeled vs. observed
time series would never be able to quantify exactly the er-
ror induced by biogenic emissions, vertical emission profiles,

or their dependence on temperature, deposition, and vertical
mixing, for example, and the analyses presented in this work
are no exception. In fact, the methodology devised to carry
out the evaluation activity in this study has not succeeded in
determining the actual causes of model error, although it does
provide much clearer indications of the processes responsible
for the error with respect to conventional operational model
evaluation.

The highly nonlinear nature of current AQ models requires
the study of the relationships among error fields, meteorolog-
ical drivers, and precursors. When the seasonal and spectral
structures of these relationships are analyzed together with
the error of the input fields (emissions and boundary condi-
tions), then it would be possible to diagnose and accurately
explain the processes responsible for the error. Future AQ
model evaluation activities should envision sensitivity simu-
lations and process specific analyses. The “theory of evalua-
tion” based on information theory currently being developed
by the hydrology modeling community (Nearing et al., 2016,
and references therein) is a promising way forward and the
AQ community should be prepared for those developments.

Ongoing work (Solazzo et al., 2017) is being devoted to
deepening the investigation into causes of model errors by
focusing on two models (CMAQ for NA and CHIMERE for
EU), for which additional model runs were carried out to
frame the effect of fluxes (emissions, boundary conditions,
and deposition) on modeled ozone.

6 Data availability

The modeling and observational data generated for the
AQMEII exercise are accessible through the ENSEMBLE
data platform (http://ensemble3.jrc.it/) upon contact with
the managing organizations. References to the repositories
of the observational data used have been also provided in
Sect. 2.3.2.
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ture and the bias of NO2 are strongly associated with the
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gin of the mMSE error by investigating the phase shift
between the modeled and observed DU and SY compo-
nents as well as focusing on looking at maximum daily
values rather than at the full time series.

– PM analysis (PM10 for Europe and PM2.5 for North
America) reveals that for Europe the error distribution
for DU and SY is homogeneous and season independent
among the models, despite the large numbers of model-
ing options and parameters characterizing the chemistry
and physics of particles. A common source of model
bias (model underestimation, especially in winter) for
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in the overestimation of surface wind speed, whereas
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of variance and low correlation coefficient in the DU
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Further analyses dealing with the PM components are
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– The analysis of the memory of the ozone signal has
revealed a strong model deficit in continental Europe,
where the seasonal modulation of ozone is overesti-
mated by the majority of the models. The opposite holds
true in the continental US.
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are no exception. In fact, the methodology devised to carry
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determining the actual causes of model error, although it does
provide much clearer indications of the processes responsible
for the error with respect to conventional operational model
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the study of the relationships among error fields, meteorolog-
ical drivers, and precursors. When the seasonal and spectral
structures of these relationships are analyzed together with
the error of the input fields (emissions and boundary condi-
tions), then it would be possible to diagnose and accurately
explain the processes responsible for the error. Future AQ
model evaluation activities should envision sensitivity simu-
lations and process specific analyses. The “theory of evalua-
tion” based on information theory currently being developed
by the hydrology modeling community (Nearing et al., 2016,
and references therein) is a promising way forward and the
AQ community should be prepared for those developments.

Ongoing work (Solazzo et al., 2017) is being devoted to
deepening the investigation into causes of model errors by
focusing on two models (CMAQ for NA and CHIMERE for
EU), for which additional model runs were carried out to
frame the effect of fluxes (emissions, boundary conditions,
and deposition) on modeled ozone.

6 Data availability

The modeling and observational data generated for the
AQMEII exercise are accessible through the ENSEMBLE
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the managing organizations. References to the repositories
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of variance and low correlation coefficient in the DU
component, possibly due to the timing of the PM cycle.
Further analyses dealing with the PM components are
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where the seasonal modulation of ozone is overesti-
mated by the majority of the models. The opposite holds
true in the continental US.
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determining the actual causes of model error, although it does
provide much clearer indications of the processes responsible
for the error with respect to conventional operational model
evaluation.
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tions), then it would be possible to diagnose and accurately
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tion” based on information theory currently being developed
by the hydrology modeling community (Nearing et al., 2016,
and references therein) is a promising way forward and the
AQ community should be prepared for those developments.

Ongoing work (Solazzo et al., 2017) is being devoted to
deepening the investigation into causes of model errors by
focusing on two models (CMAQ for NA and CHIMERE for
EU), for which additional model runs were carried out to
frame the effect of fluxes (emissions, boundary conditions,
and deposition) on modeled ozone.

6 Data availability

The modeling and observational data generated for the
AQMEII exercise are accessible through the ENSEMBLE
data platform (http://ensemble3.jrc.it/) upon contact with
the managing organizations. References to the repositories
of the observational data used have been also provided in
Sect. 2.3.2.

www.atmos-chem-phys.net/17/3001/2017/ Atmos. Chem. Phys., 17, 3001–3054, 2017



Perturbed parameter 
ensembles

Atmos. Chem. Phys., 11, 12253–12273, 2011
www.atmos-chem-phys.net/11/12253/2011/
doi:10.5194/acp-11-12253-2011
© Author(s) 2011. CC Attribution 3.0 License.

Atmospheric
Chemistry

and Physics

Emulation of a complex global aerosol model to quantify
sensitivity to uncertain parameters
L. A. Lee, K. S. Carslaw, K. J. Pringle, G. W. Mann, and D. V. Spracklen
Institute for Climate and Atmospheric Science, University of Leeds, UK

Received: 7 July 2011 – Published in Atmos. Chem. Phys. Discuss.: 19 July 2011
Revised: 11 November 2011 – Accepted: 16 November 2011 – Published: 8 December 2011

Abstract. Sensitivity analysis of atmospheric models is
necessary to identify the processes that lead to uncertainty
in model predictions, to help understand model diversity
through comparison of driving processes, and to prioritise
research. Assessing the effect of parameter uncertainty in
complex models is challenging and often limited by CPU
constraints. Here we present a cost-effective application
of variance-based sensitivity analysis to quantify the sensi-
tivity of a 3-D global aerosol model to uncertain parame-
ters. A Gaussian process emulator is used to estimate the
model output across multi-dimensional parameter space, us-
ing information from a small number of model runs at points
chosen using a Latin hypercube space-filling design. Gaus-
sian process emulation is a Bayesian approach that uses in-
formation from the model runs along with some prior as-
sumptions about the model behaviour to predict model out-
put everywhere in the uncertainty space. We use the Gaus-
sian process emulator to calculate the percentage of expected
output variance explained by uncertainty in global aerosol
model parameters and their interactions. To demonstrate the
technique, we show examples of cloud condensation nuclei
(CCN) sensitivity to 8 model parameters in polluted and re-
mote marine environments as a function of altitude. In the
polluted environment 95% of the variance of CCN concen-
tration is described by uncertainty in the 8 parameters (ex-
cluding their interaction effects) and is dominated by the
uncertainty in the sulphur emissions, which explains 80%
of the variance. However, in the remote region parameter
interaction effects become important, accounting for up to
40% of the total variance. Some parameters are shown to
have a negligible individual effect but a substantial interac-
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tion effect. Such sensitivities would not be detected in the
commonly used single parameter perturbation experiments,
which would therefore underpredict total uncertainty. Gaus-
sian process emulation is shown to be an efficient and useful
technique for quantifying parameter sensitivity in complex
global atmospheric models.

1 Introduction

Aerosols have an important but very uncertain impact on
climate (Forster et al., 2007). The uncertainty has many
sources, but inter-model differences, as well as uncertain-
ties and limitations in the driving aerosol processes, are key
factors. Until recently, climate models used simple repre-
sentations of aerosol, which were based mostly on just parti-
cle mass. But the recognition that simplification of physical
processes limits model predictive capability has led to the
development of more complex “second generation” aerosol
microphysics schemes that are intended to enhance model re-
alism and improve the reliability of predictions (Binkowski
and Shankar, 1995; Jacobson, 1997; Whitby and McMurry,
1997; Ackermann et al., 1998; Ghan et al., 2001; Adams and
Seinfeld, 2002; Lauer et al., 2005; Liu et al., 2005; Stier et al.,
2005; Spracklen et al., 2005a; Debry et al., 2007; Spracklen
et al., 2008). Model realism has undoubtedly improved,
but the diversity in model aerosol radiative forcing estimates
has remained high in successive IPCC assessments (Schimel
et al., 1996; Penner et al., 2001; Forster et al., 2007).
There are three reasons why an understanding of model

sensitivity to uncertain inputs is important. Firstly, we need
to attribute the uncertainty in model predictions to vari-
ous processes and the poorly constrained model parame-
ters that describe these processes. At present, most of our
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in the model output when everything except the input un-
der investigation is learnt. The total effect sensitivity com-
pared to the main effect sensitivity gives an indication of
how each input interacts with others, which can then be fur-
ther investigated. Variance-based methods require complete
specification of the model output throughout the space of the
parameter uncertainty. In many applications (Saltelli et al.,
2000) these outputs are generated in a Monte Carlo simu-
lation using a very large number (usually many thousands)
of model runs. Here we use Gaussian process emulation,
which generates the same level of information required by
variance-based sensitivity analysis but requires considerably
fewer model runs than Monte Carlo (see Sect. 2).
The aim of this paper is to demonstrate the potential of

the emulation approach applied to a complex global aerosol
model. We use the Global Model of Aerosol Processes,
GLOMAP (Spracklen et al., 2005a; Mann et al., 2010) and
follow a previous sensitivity study using the OAT technique
(Spracklen et al., 2005b). The model predicts a wide range
of aerosol properties relevant to climate and air quality. Here
we focus on cloud condensation nuclei (CCN), which is the
subset of aerosol particles that can form cloud drops. The
concentration of CCN is a key quantity in the prediction
of the very uncertain aerosol indirect effect. It is also a
quantity where an understanding of model uncertainty will
greatly benefit the analysis of newly compiled global datasets
(Spracklen et al., 2011).
This paper is set out as follows. In Sect. 2 emulation is

introduced and compared with other approaches. In Sect. 3
we describe the global aerosol model and specify the uncer-
tain parameters. In Sect. 4 the application of the sensitivity
analysis on the global aerosol model using emulation is pre-
sented.

2 Emulation of the global aerosol model GLOMAP

The basic procedure for an emulation study is shown in
Fig. 1. No screening or formal elicitation is carried out as
part of the initial study.

2.1 Why is emulation necessary?

Emulation is the process by which the computer model is re-
placed by a statistical surrogate model that can be run more
efficiently. The global aerosol model used here is a complex
computer code so it is practically impossible to explore the
entire parameter uncertainty space. Haerter et al. (2009) and
Lohmann and Ferrachat (2010) study various combinations
of parameter values but the amount of information generated
is not sufficient for a full variance-based analysis. When a
simple computer model with very short run time is available
emulation is redundant since the actual computer model can
be used to provide output throughout the parameter uncer-
tainty space; this is a Monte Carlo simulation.
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10. Quantify
variance and
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Fig. 1. The basic procedure to follow in an emulation study.

O’Hagan (2006) compares Monte Carlo and emulation
techniques in the sensitivity analysis of computer models.
A comprehensive variance-based sensitivity analysis may re-
quire millions of model runs, and even for a model that takes
just one second to run just one million runs takes 11.5 days
of continuous CPU time. With a complex computer code
such as a global aerosol model a Monte Carlo simulation
is not feasible. The aim of the emulator is to estimate the
output of the model at a large number of untried parame-
ter combinations so that variance-based sensitivity analysis
(Saltelli et al., 2000) becomes feasible. In this work the
Gaussian process is used for emulation (O’Hagan, 2006), but
other emulation methods are available and have been applied
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Fig. 3. 600 realisations from a one-dimensional emulator of the
same curve in Fig. 2 but trained by five poorly spaced points. The
uncertainty outside the training data is so great that the mean can
not be considered representative of the true curve. Extrapolation
should be avoided where possible.

The Gaussian process has been used to carry out uncer-
tainty analysis (Haylock and O’Hagan, 1996; O’Hagan and
Haylock, 1997; Oakley and O’Hagan, 2002) including meth-
ods for estimating the percentiles of the output uncertainty
distribution. Oakley and O’Hagan (2004) extend their previ-
ous work to include sensitivity analysis in order to apportion
the uncertainty in the output to the inputs and their interac-
tions. The effect of the individual inputs and their interac-
tions on the output is found by integrating the posterior mul-
tivariate mean with respect to various subsets of inputs and
the expected variances are found similarly. The details of the
integrations and the formulas involved in performing the sen-
sitivity analysis can be found in Oakley and O’Hagan (2004).
Morris et al. (2008) show a practical application of Gaussian
process emulation for sensitivity analysis using a radiative
transfer model.
Here we used readily available software, the Gaussian Em-

ulation Machine for Sensitivity Analysis, http://ctcd.group.
shef.ac.uk/gem.html. GEM-SA produces the main effect and
total effect sensitivity measures for each input variable and
the relationship between the model output and each of the
uncertain parameters can be plotted. The spread of the lines
in the plots produced compared to the range covered on the
y-axis gives an indication of the emulator uncertainty com-
pared to the effect of the parametric uncertainty. The first-
order interaction sensitivity measures can be requested and
their relationship with the model output plotted. Kennedy
et al. (2008) use GEM-SA for sensitivity analysis of a dy-
namic vegetation model.

Experiment number

Fig. 4. Upper: the design used here. Lower: the design used in
Spracklen (2005).

2.2.1 Important assumptions for the Gaussian process
emulator for sensitivity analysis

There are two important assumptions relating to the use of
the Gaussian process emulator for sensitivity analysis. These
are:
The computer model is smooth and continuous with re-

spect to its inputs The increased efficiency of the emulator
over the computer model is based upon being able to use the
information from a few runs to predict the output at untried
points. This information comes from the output covariance
between pairs of points and depends on the distance between
the two points. When the output is smooth and continuous
with respect to the inputs there is higher correlation between
points, allowing a lower uncertainty in predictions far from
the training points. If the computer model is not smooth then
the increased efficiency is lost since too many runs would be
required to build the emulator. The smoothness assumption
is tested using validation data.
Separately identifiable emulator inputs The emulator in-

puts (the model parameters under investigation) should be
separately identifiable. The identifiability of the inputs may
not be known before the emulator is built but when there is
some prior knowledge of an identifiability issue between pa-
rameters then only one or some function of them should be
varied. Using separately identifiable inputs also keeps the
necessary model runs to a minimum.
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Fig. 6. June 2000 CCN concentrations for London versus the sul-
phur emissions parameter values in the 80 original GLOMAP runs
(red) and the new GLOMAP runs where all parameters were set low
(green). The numbers show the experiment number in each of the
designs: original and low.

The 8 validation points placed close to the training data
(shown in red) have small 95% confidence intervals that
cover the GLOMAP simulations showing that the emulator is
estimating well close to the training data. With the exception
of one, the other 16 emulated points have 95% confidence
intervals that cover the GLOMAP simulations showing the
emulator is estimating well even at points far away from the
training data.
Normally, one outlying point would not indicate that the

emulator is invalid, but in Fig. 5a (the London grid box)
the 95% confidence interval is very small considering the
distance of the point from the GLOMAP simulated value.
We therefore investigated more closely the model predictions
corresponding to this point. The outlying point in Fig. 5a is
shown to have high CCN in the original GLOMAP simula-
tion and it is necessary to evaluate the realism of this model
prediction by comparison with observations. The outlying
point corresponds to all the parameters set to their lowest val-
ues. The high CCN concentrations are surprising because a
low value of some parameters (especially SO2 EMS) should
favour low CCN. To explore both the model and the emu-
lator behaviour when all parameters are set low a further 8
GLOMAP runs were performed with all parameter values in
the bottom 5% of the parameter range, defined using Latin
hypercube sampling. Figure 6 shows the relationship be-
tween CCN and SO2 EMS in London from all 88 GLOMAP
simulations. As expected CCN concentrations generally in-
crease with SO2 EMS, but the additional 8 simulations be-
have differently. Figure 6 shows that the model is behaving
oddly in this region of the parameter space, the emulator can-
not capture this behaviour.
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Fig. 7. A bar chart displaying the parameter sensitivities in (a) the
polluted grid cell and (b) the remote grid cell. The red bars show the
main effect sensitivities and the green bars show howmuch each pa-
rameter interacts with the others to contribute to the CCN variance.

There are two reasons to reject points from this tiny corner
of parameter space. Firstly, the global aerosol fields show
that total particle concentrations lie well outside observed
ranges (Spracklen et al., 2010). Secondly, the behaviour of
the aerosol system appears to be unphysical and not con-
sistent with observed behaviour. The high CCN concentra-
tions are created by extremely high number concentrations
of nucleation mode aerosol, which grow mainly by coagu-
lation to CCN sizes. Rapid nucleation throughout the atmo-
sphere is sustained by a low vapour condensation sink (low
particle surface areas) caused by efficient aerosol scaveng-
ing (low SCAV DIAM) and a low nucleation threshold (low
NUC THRESH). In this environment, lower sulphur emis-
sions act to exacerbate the low condensation sink more than
they reduce the nucleation rate, so nucleation is enhanced
further.
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Fig. 6. June 2000 CCN concentrations for London versus the sul-
phur emissions parameter values in the 80 original GLOMAP runs
(red) and the new GLOMAP runs where all parameters were set low
(green). The numbers show the experiment number in each of the
designs: original and low.

The 8 validation points placed close to the training data
(shown in red) have small 95% confidence intervals that
cover the GLOMAP simulations showing that the emulator is
estimating well close to the training data. With the exception
of one, the other 16 emulated points have 95% confidence
intervals that cover the GLOMAP simulations showing the
emulator is estimating well even at points far away from the
training data.
Normally, one outlying point would not indicate that the

emulator is invalid, but in Fig. 5a (the London grid box)
the 95% confidence interval is very small considering the
distance of the point from the GLOMAP simulated value.
We therefore investigated more closely the model predictions
corresponding to this point. The outlying point in Fig. 5a is
shown to have high CCN in the original GLOMAP simula-
tion and it is necessary to evaluate the realism of this model
prediction by comparison with observations. The outlying
point corresponds to all the parameters set to their lowest val-
ues. The high CCN concentrations are surprising because a
low value of some parameters (especially SO2 EMS) should
favour low CCN. To explore both the model and the emu-
lator behaviour when all parameters are set low a further 8
GLOMAP runs were performed with all parameter values in
the bottom 5% of the parameter range, defined using Latin
hypercube sampling. Figure 6 shows the relationship be-
tween CCN and SO2 EMS in London from all 88 GLOMAP
simulations. As expected CCN concentrations generally in-
crease with SO2 EMS, but the additional 8 simulations be-
have differently. Figure 6 shows that the model is behaving
oddly in this region of the parameter space, the emulator can-
not capture this behaviour.
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Fig. 7. A bar chart displaying the parameter sensitivities in (a) the
polluted grid cell and (b) the remote grid cell. The red bars show the
main effect sensitivities and the green bars show howmuch each pa-
rameter interacts with the others to contribute to the CCN variance.

There are two reasons to reject points from this tiny corner
of parameter space. Firstly, the global aerosol fields show
that total particle concentrations lie well outside observed
ranges (Spracklen et al., 2010). Secondly, the behaviour of
the aerosol system appears to be unphysical and not con-
sistent with observed behaviour. The high CCN concentra-
tions are created by extremely high number concentrations
of nucleation mode aerosol, which grow mainly by coagu-
lation to CCN sizes. Rapid nucleation throughout the atmo-
sphere is sustained by a low vapour condensation sink (low
particle surface areas) caused by efficient aerosol scaveng-
ing (low SCAV DIAM) and a low nucleation threshold (low
NUC THRESH). In this environment, lower sulphur emis-
sions act to exacerbate the low condensation sink more than
they reduce the nucleation rate, so nucleation is enhanced
further.
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