

Next generation modelling with LFRic

UKCA Chemistry and Aerosol Tutorials 7 December 2022

Ben Shipway

Outline

- Current Generation Modelling
 - UM atmosphere and ENDGame dynamical core
- Motivation
 - Why do we need a 'Next Generation'
- Next Generation Modelling
 - LFRic atmosphere and GungHo dynamical core
 - Look a bit at the code
- Current status and plans
 - When with LFRic be ready?

Seamless development

Global configurations	Horizontal resolution	Vertical levels
Deterministic NWP	0.14° x 0.09° (~10 km at mid- latitudes)	70 levels to 80 km
Ensemble NWP	0.28° x 0.18° (~20 km at mid- latitudes)	70 levels to 80 km
Seasonal/ Decadal climate	0.83° x 0.55° (~50 km at mid- latitudes)	85 levels to 85 km
Centennial/ ESM climate	1.875° x 1.25° (~140 km at mid- latitudes)	38 levels to 40 km

Seamless development

Regional configurations	Horizontal resolution	Vertical levels
UKV	1.5x1.5 km 950 x 1025 grid points	70 levels to 40 km
Ensemble	2.2x2.2 km 740 x 752 grid points	70 levels to 40 km
London Model	300mx300m 380x420	90 levels to 40 km
Relocatable LAM	various	various

Length (km)

Seamless development

Global hi-resolution (NWP): - Reaching limit of strong scaling

- Primary motivation for GungHo

Global low-resolution (climate/ESM):

- Dynamical core a smaller proportion of overall cost
- Greater cost from chemistry and diagnostics

- Motivates equations that are accurate on long timescales (e.g., conservation, no systematic bias)

Regional hi-resolution (NWP):

- Spatial domain scales well

- Motivates non-hydrostatic equation set

Constraints for GungHo design

Current generation modelling

Unified Model and ENDGame dynamical core

Structure of the Grid

Horizontal: latitude-longitude

Vertical: terrain following

Spatial Discretisation: Staggered Finite Differences

Transport: Semi-Lagrangian

Semi-implicit timestep

- Continuous: $\frac{\partial x}{\partial t} = f(x(t))$ • Explicit: $\frac{x^{n+1}-x^n}{\Delta t} = f(x^n)$ • Implicit: $\frac{x^{n+1}-x^n}{\Delta t} = f(x^{n+1})$ • Semi-implicit: $\frac{x^{n+1}-x^n}{\Delta t} = \alpha f(x^{n+1}) + (1-\alpha)f(x^n)$ • Picard iteration: $x^{k+1} = x^n + \Delta t(\alpha f(x^k) + (1-\alpha)f(x^n))$, take $x^{n+1} = x^n$
 - x^{k+1} after k iterations

Why the next generation?

LFRic and GungHo dynamical core

Story begins at the ENDGame

- ENDGame operational 2014
- Greatly improved scalability...
- ...but not enough for Exascale

The problem is hardware

UM strong scaling at N2048 (~6km)

Performance Motivation

- Scalability for Lat-Lon mesh is limited by polar singularities
- Assumption of regular, orthogonal, finite difference scheme is deeply embedded in UM code

- No clear separation between computational and science code
- Choice to develop new infrastructure alongside the dynamical core

Choice of mesh (cubed-sphere)

- Triangles potentially difficult for coupling to physics and other system components.
- Not ruled out by GungHo and could be explored in future.

 Primary candidate and following assessment of scientific performance, is now becoming 'baked into' NGMS plans.

- Could retain ENDGame numerics.
- Not good for conservation/physics in the overlap region.

Mixed Finite Elements

Mixed Finite Element method gives

- Compatibility: $\nabla \times \nabla \varphi = 0$, $\nabla \cdot \nabla \times v = 0$
- Accurate balance and adjustment properties
- No orthogonality constraints on the mesh
- Flexibility of choice mesh (quads, triangles) and accuracy (polynomial order)

Mixed Finite Element Method $\mathbb{W}_0 \xrightarrow{\nabla} \mathbb{W}_1 \xrightarrow{\nabla \times} \mathbb{W}_2 \xrightarrow{\nabla} \mathbb{W}_3.$

- Retains layout and properties of UM
- No requirement for orthogonality

$$\mathbb{W}_{ heta} = \mathbf{k} \cdot \mathbb{W}_2$$

\mathbb{W}_0	Pointwise scalars	
\mathbb{W}_1	Circulation Vectors	
\mathbb{W}_2	Flux Vectors	Velocity
\mathbb{W}_3	Volume integrated Scalars	Pressure, Density
$\mathbb{W}_{ heta}$	Pointwise scalars	Potential Temperature, moisture

Linear Solver

• Solver Outer system with Iterative (GCR) solver

$$\begin{pmatrix} M_{2}^{\mu,C} & -P_{2\theta}^{\Pi^{*}} & -G^{\theta^{*}} \\ D^{\rho^{*}} & M_{3} & & \\ P_{\theta 2}^{\theta^{*}} & & M_{\theta} & \\ & -M_{3}^{\rho^{*}} & -P_{3\theta}^{*} & M_{3}^{\Pi^{*}} \end{pmatrix} \begin{pmatrix} \widetilde{u}' \\ \widetilde{\rho}' \\ \widetilde{\theta}' \\ \widetilde{\Pi}' \end{pmatrix} = \begin{pmatrix} -\mathcal{R}_{u} \\ -\mathcal{R}_{\rho} \\ -\mathcal{R}_{\theta} \\ -\mathcal{R}_{\Pi} \end{pmatrix}$$

Slow

physics

Cloud/

Chemistry/

Aerosol

Nonlinear/

Coriolis

Fast physics

transport

- Contains all couplings
- Velocity mass matrices couple in all directions and potential temperature mass matrices couple in the vertical
- Efficient solution requires a good preconditioner...

Multigrid preconditioner

 Helmholtz system HΠ' = R solved using a single Geometric-Multi-Grid V-cycle with block-Jacobi smoother

$$H = M_3^{\Pi^*} + \left(F_{3\theta}^* \mathring{M}_{\theta}^{-1} P_{2}^{\theta^*, z} + M_3^{\rho^*} M_3^{-1} D^{\rho^*} \right) \left(\mathring{M}_2^{\mu, C} \right)^{-1} G^{\theta^*}.$$

- Coupled mass matrices are now lumped
- Preconditioner system resembles single ENDGame solve

Set Office Transport – horizontal options

UM-LFRic differences/similarities

	ENDGame/UM	GungHo/LFRic
Grid	Lat-Long	Cubed-Sphere
Equation set	Deep, non-hydrostatic	Deep, non-hydrostatic
Prognostic Variables	ρ, θ, Π, u, ν, w	ρ, θ, Π, <u>u</u>
Moist Variables	Specific humidities & mixing ratios	mixing ratios !
Spatial Discretisation	2 nd Order FD	Mixed FEM
Temporal Discretisation	Iterative Semi-Implicit	Iterative Incremental Semi-Implicit
Advection	Semi-Lagrangian	Dimensionally split, Eulerian or FFSL
Physics parametrizations	UM,SOCRATES,JULES	UM,SOCRATES,JULES

Algorithms, kernels and Psyclone

• Algorithms work on full domain fields:

 No need to worry about loops, mesh structure, parallelism – this is all taken care of in the mysterious "invoke" • Kernels work on individual grid points:

```
do k = 0, nlayers-1
```

- Direct looping over k dimension
- Indirect looping over horizontal mesh using "map_wth"

Algorithms, kernels and Psyclone

- Psyclone is auto-generated code which sits between algorithms and kernels
- Deals with data parallelism halo exchanges, openMP
- Does looping over horizontal mesh if required
 - Option to pass the entire horizontal domain (of MPI rank) to a kernel, to allow i-first looping if this is more performant
- Metadata is added to kernels to configure Psyclone:

Psyclone auto-generated code:

END SUBROUTINE invoke 0

Coupling in the physics

- Map LFRic fields onto UM arrays
 - Example here is k-first data, but can add i-

```
loop:
j = 1
do k = 1, model levels
  do i = 1, seg len
    ! height of levels from centre of planet
   r rho levels(i,j,k) = height w3(map w3(1,i) + k-1) + planet radius
```

- Call the UM scheme
 - All spatially varying information must be passed in through argument list – no use of modules
- Map UM outputs back to LFRic fields

! For the initial implementation we pass each individual column ! of data to an array sized (1,1,k) to match the UMs (i,j,k) data ! lavout. ! assuming map wth(1) points to level 0 and map w3(1) points to level 1

do k = 1. nlavers

! wet density on theta and rho levels rho wet tq(1,1,k) = wetrho in wth(map wth(1) + k)rho wet(1,1,k) = wetrho in w3(map w3(1) + k-1) ! dry density on theta and rho levels rho dry theta(1,1,k) = rho in wth(map wth(1) + k) rho dry(1,1,k) = rho in w3(map w3(1) + k-1)

call glue conv 6a

<pre>(rows*row_length, segments, n_conv_levels, bl_level</pre>	s, call_number, &
<pre>seg_num, theta_conv, q_conv, qcl_conv, qcf_conv</pre>	&
, qrain_conv, qgraup_conv, qcf2_conv	&
, cf_liquid_conv, cf_frozen_conv, bulk_cf_conv	8
, p_star, land_sea_mask	&
, u_conv, v_conv, w(1,1,1)	8

8

- , p star, land sea mask
- , u conv, v conv, w(1,1,1)
- , tot tracer, dthbydt, dqbydt, dqclbydt, dqcfbydt
- , dcflbydt, dcffbydt, dbcfbydt, dubydt_p, dvbydt_p

```
if (1 mom) then
  do k = 1. n conv levels
    u conv(1,1,k) = u conv(1,1,k) + dubydt p(1,1,k) * timestep conv
                                   + dvbydt p(1,1,k) * timestep conv
    v \text{ conv}(1,1,k) = v \text{ conv}(1,1,k)
    ! total increments
 du conv(map w3(1) + k -1) = du conv(map w3(1) + k -1) + dubydt p(1,1,k) * timestep conv
    dv conv(map w3(1) + k -1) = dv conv(map w3(1) + k -1) + dvbydt p(1,1,k) * timestep conv
  end do
```

```
end if
         !l mom
```


Current status

www.metoffice.gov.uk

© Crown Copyright 2022, Met Office

www.metoffice.gov.uk

© Crown Copyright 2022, Met Office

Global status

0324, level: 25, time: 30

- C448 (20km) simulations
 running
- Currently attempting C896
 (10km)...

Climate assessment

•

thing

Paul Earnshaw

Increased humidity over land

- broadly seems like a good

Climate assessment

- Large scale circulation is a bit different
- Jets moved polewards ۲

18

18

In gross terms, the mean • climate looks broadly similar however

Paul Earnshaw

Regional status

1.5km UK simulations looking reasonable

Very high resolution

- Idealised "radiativeconvective equilibrium" at 100m grid-length also shows good comparison
- Structures appear more coherent and better resolved in LFRic

Very high resolution

- Idealised dry convective boundary layer at 100m grid-length
- Comparison to large-eddy model (MONC) is pretty good
- Promising signs that LFRic could behave reasonable as a large-eddy model, and certainly be suitable for ~100m NWP

Adrian Lock

Future plans

© Crown Copyright 2022, Met Office

Multi-resolution coupling

- Currently the UM runs a hybrid "juniorsenior" Earth system model, coupling an N216 physical model to N96 chemistry & ES components
- Aim to design this from the bottom up with LFRic, allowing coupling between different model components (dynamics, physics, chemistry) on different meshes
- Infrastructure can be equally applicable to limited-area models

Physics

Idealised testing

- Moist gravity wave with condensation/evaporation
- Black shows convergence of results as dynamics and physics resolution is increased
- Red shows increasing physics resolution beyond dynamics does not improve errors
- Blue shows degrading physics resolution initially has no effect, but then leads to strong degradation

Transport on a different mesh

- Tracer bubble exists at coarser resolution than model dynamics
- Dynamical winds driver tracer transport on it's native mesh
- Works, and is much cheaper than transport on dynamics mesh

Global NWP simulations

- Initial tests demonstrate that it's possible to run full model with physics at different resolution to dynamics
- Results look plausible in all cases

What's changing

- Infrastructure
- Code layout (algorithms & kernels)
- Data layout (k-first ordering)
- Input/output & file format (netcdf)
- Transport (substepped method of lines or flux-form semi-lagrangian – both locally conservative)
- Solver (mixed system with multigrid preconditioner)

What's not changing (much)

- Physical parametrizations
 - UM, Jules, Socrates, Casim, UKCA built directly from their current repositories
- Horizontal and vertical grids (Cgrid horizontal, Charney-Phillips vertical)
- Timestep structure (slow/fast physics, iterative outer/inner loop dynamics)
- Use of Rose, fcm etc