

UKCA_RADAER Aerosol-radiation interactions

Nicolas Bellouin UKCA Training Workshop, Cambridge, 8 January 2015

© University of Reading 2014

n.bellouin@reading.ac.uk

Lecture summary

- Why care about aerosol-radiation interactions?
- Theory of aerosol-radiation interactions
 - Mie scattering
- Description of UKCA_RADAER
 - Methods
 - Diagnostics
 - Double-call simulations

AEROSOL-RADIATION INTERACTIONS

Wiversity of Reading

"This mixture of smoke and dust seems far brighter on the side from which sunlight comes than on the opposite side."

Leonardo da Vinci, Manuscript A (circa 1490)

Aerosol-radiation interactions

Absorption

- Scattering out of viewing direction
- Scattering into viewing direction

Emission

Why we care about aerosolradiation interactions

- They are part of the energy budget of the Earth: the direct radiative effect.
- They affect visibility.
- For anthropogenic aerosols, they represent a radiative forcing of the climate system: the direct radiative forcing.
- They allow model evaluation against remote-sensing products.

Why we care

- Forest fires in Portugal, 3 August 2003
- Image by MODIS radiometer
- Above dark surfaces, scattering by aerosols increase shortwave planetary albedo: loss of energy at the top of atmosphere and surface
- Above bright surfaces, absorption by aerosols decrease shortwave planetary albedo: gain of energy at the top of atmosphere, loss of energy at surface.

Why we care

Haywood et al.
(2005) Can desert
dust explain the
outgoing longwave
radiation anomaly
over the Sahara
during July 2003?

Why we care

Radiative forcing of climate between 1750 and 2011 Forcing agent

IPCC AR5, Figure 8.15

MIE SCATTERING

Aerosol size distribution

Aircraft measurements, Osborne et al. [2007]

The distribution of particle number (or surface, or volume) as a function of particle radius shows local maxima, called modes.

The size distribution is critical for interactions with radiation.

Radius range	r < 0.05 μm	r < 0.5 μm	r > 0.5 µm
Mode	Nucleation, Aitken	Accumulation	Coarse
Typical origin	Gas-to-particle conversion	Coagulation, combustion	Friction

Mie scattering

- Aerosol radii r (0.1 to 10 μ m) are of similar magnitude to the wavelength λ of shortwave and longwave radiation
 - Shortwave (or solar) spectrum: 0.25 to 5 μm
 - Longwave (or terrestrial) spectrum: 3 to 50 μm
- When $r \sim \lambda$, this is the domain of **Mie** scattering.
- Mie theory (1908) applies to homogeneous spheres, which is generally a good approximation for aerosols.

Mie scattering

• Mie theory allows the calculation of the scattering and absorption cross sections σ_{sca} and σ_{abs} (in m²).

- According to Mie theory, σ_{sca} and σ_{abs} depend *only* on:
 - The size parameter
 - $x = 2\pi r / \lambda$
 - The complex refractive index
 - $m = n_{\rm r} n_{\rm i}$
- For hygroscopic aerosols, the impact of water uptake on x and m needs to be included.

Phase function

• Also calculated by Mie theory, the phase function gives the probability of being scattered in a given direction.

 In most climate models, phase function is represented by its average, the dimensionless asymmetry parameter g.

Mie scattering for an aerosol distribution

University of

$$\sigma_{sca}(r,\lambda,n_r,n_i) = \int Q_{sca}(r,\lambda,n_r,n_i) n(r)r^2 dr$$

- This is done for the three optical properties required:
- $\sigma_{sca}, \sigma_{abs}, and g$

UKCA_RADAER

UKCA_RADAER: look-up tables

- Mie scattering calculations are too expensive to be done at runtime.
- However GLOMAP size distributions are interactive, so aerosol optical properties cannot be prescribed offline.
- Solution: look-up tables containing optical properties for all realistic combinations of x and m.
- Aerosol size distributions are assumed lognormal, with fixed standard deviations depending on mode.

UKCA_RADAER: look-up tables

- The look-up tables contain:
 - $\sigma_{sca}(x, n_r, n_i)$ and $\sigma_{abs}(x, n_r, n_i)$, in m⁻¹ (normalised per unit volume)

- *g*

- aerosol volume fraction $V(x) = \frac{4}{3} \pi \int x^3 n(x) dx$ (norm. per unit vol.)
- 51 values of x, 51 values of n_r , 51 values of n_i
- Realistic ranges depend on the aerosol mode and the range of wavelength considered:

Mode	Spectrum	x	n _r	n _i
Accumulation	SW	4 10 ⁻³ to 32	1.25 to 2	0 to 0.6
	LW	4 10 ⁻⁶ to 2	0.50 to 3	10 ⁻⁹ to 1
Coarse	SW	0.3 to 48	1.25 to 2	0 to 0.6
	LW	3 10 ⁻⁴ to 3	0.5 to 3	10 ⁻⁹ to 1

UKCA_RADAER: look-up tables

UMUI: Section 34 UKCA > COUPL > RADAER

Direct effect o	f MODE aerosols in radiation scheme (UKCA_I	RADAER) : Job xhma.l: "cp AOO	GHG;StratTrop+MODE+Rad+Ac	:t;Volc_Off;SS fix" 🗕 🗖 🗙			
Directory path to UKCA_RADAER input files: /projects/um1/ancil/port_exceptions/ukca							
File of precomputed values: Look-up table for aitken modes and insoluble accumulation-mode aerosol optical properties in the shortwave Look-up table for aitken modes and insoluble accumulation-mode aerosol optical properties in the longwave Look-up table for soluble accumulation-mode aerosol optical properties in the shortwave Look-up table for soluble accumulation-mode aerosol optical properties in the shortwave Look-up table for soluble accumulation-mode aerosol optical properties in the longwave Look-up table for coarse-mode aerosol optical properties in the shortwave Look-up table for coarse-mode aerosol optical properties in the shortwave			ve RADAER_pcalc_G nml_ac_sw e nml_ac_lw nml_an_sw nml_an_lw nml_cr_sw nml_cr_lw	RADAER_pcalc_GA6.ukca nml_ac_sw nml_ac_lw nml_an_sw nml_an_lw nml_cr_sw nml_cr_lw			
Push UKCA to go to the parent window Push Coupl to go to the UKCA Coupling window							
Help	Abandon changes	Close	UKCA	Coupl			
Window Name : atmos_Science_Section_UKCA_Rad. Job xhma.l.							

Here, vn8.6.

UKCA_RADAER Methods

- 1. Compute x from GLOMAP's modal wet diameter and current wavelength.
- 2. Compute *m* of internal mixture as volume-weighted average of component *m* (including water)
 - $[NH_4]SO_4$ or H_2SO_4 , BC, OC, SOA, sea-salt, mineral dust, NH_4NO_3
- 3. Now that x and m are known, access the right σ_{sca} , σ_{abs} , g, and V in the relevant look-up table.
- 4. Convert to specific scattering and absorption (m² kg⁻¹) to comply with radiation code requirements: $k_{sca} = \frac{\sigma_{sca}}{\rho V}$, where ρ is the modal density (kg m⁻³).

UKCA_RADAER Key functions

- ukca_radaer_band_average()
 - Integrates aerosol optical properties across Unified Model spectral wavebands
 - 6 integration wavelengths per waveband
 - Weighted by solar irradiance (SW) or Planck's blackbody function (LW)
- ukca_radaer_compute_aod()
 - Optical properties remain monochromatic (6 wavelengths)
 - Integration over the column

UKCA_RADAER: diagnostics

- Aerosol optical depths (AOD)
 - 1 per aerosol mode
 - Section 2 diagnostics (2–300+), with 6 pseudo-levels representing wavelength: 0.38, 0.44, 0.55, 0.67, 0.87, 1.02 µm
- Allow comparison against satellite retrievals (MODIS, MISR, POLDER, ...) and ground-based measurements (AERONET)
- Angstrom exponent can be computed from AODs at two different wavelengths.

GLOMAP-mode AOD

UKCA_RADAER: diagnostics

- Aerosol absorption optical depth (AAOD)
 - 1 per aerosol mode
 - Section 2 diagnostics, require a branch.
 - Same 6 wavelengths (pseudo-levels) as AOD
- Allow calculation of singlescattering albedo (SSA):

 $\varpi_0 = \frac{1 - AAOD}{AOD}$

Characterises absorption.

GLOMAP-mode SSA

UKCA_RADAER: diagnostics

- Stratospheric aerosol optical depths
 - Same as AODs, but computed over stratospheric levels only.
 - Useful for volcanic eruption or geo-engineering studies.
- Vertical profile of scattering or absorption coefficients
 - Essentially, 3D profiles of AOD at fixed wavelengths (0.55 or 1.02 $\mu m).$
 - When divided by geometric thickness of model levels, give σ_{sca} or $\sigma_{abs},$ in m^-1.
 - Useful to compare against lidars.

UKCA_RADAER: double-call simulations

 Typically used to compute radiative forcing following the IPCC AR4 definition: "the change in net irradiance at the tropopause [...] with surface and tropospheric temperatures and state *held fixed at the unperturbed values*."

Summary

- UKCA_RADAER is a piece of code within the Unified Model's Edwards-Slingo Radiation Scheme.
- It allows interaction between radiation and UKCA/GLOMAP aerosols.
- It offers important diagnostics, e.g. aerosol optical depths.
- More details: Unified Model Documentation Paper 84, section 13.2
- Reference: Bellouin *et al., Atmos. Chem. Phys.,* doi:10.5194/acp-13-3027-2013, 2013. [Section 5]
- n.bellouin@reading.ac.uk