

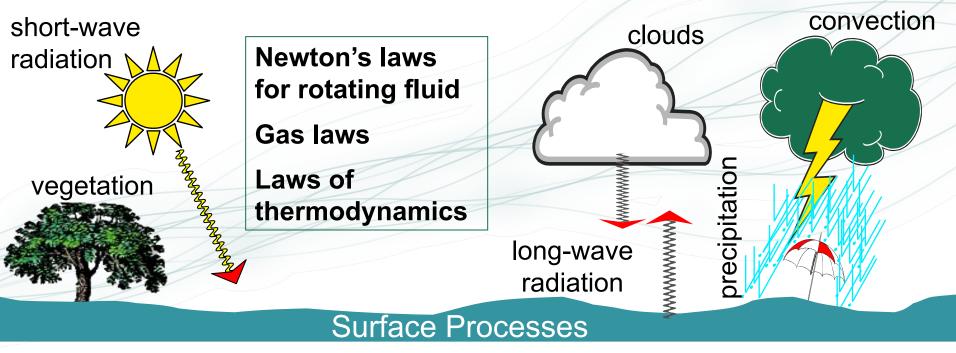
Yusuf Hamied Department of Chemistry

How to do everything with UKCA

Luke Abraham NCAS Cambridge

n.luke.abraham@ncas.ac.uk

- What is the Unified Model, and how is code developed for it?
- What do I mean by "virtually"?
- What do I mean by "virtually everything"?
- What do I mean by "everything"?



What is the Met Office Unified Model?

Atmospheric Modelling: integrating our knowledge of atmospheric behaviour forward in time

• The challenge: To reproduce the behaviour of (hazardous) weather systems

Unified Model

Brown et al. (2013)

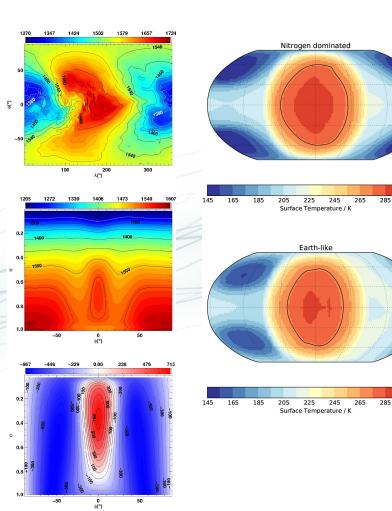
- Operational forecasts
 - ☐ Mesoscale (resolution approx. 4km, 1.5km)
 - ☐ Global scale (resolution approx. 17km)
- Seasonal predictions
 - ☐ Resolution approx. 60km

- Global and regional climate predictions
 - ☐ Resolution around 120km
 - ☐ Run for 10-100-... years
- Research mode
 - ☐ Resolution 1km 10m

> 25 years old

The consequence of unification

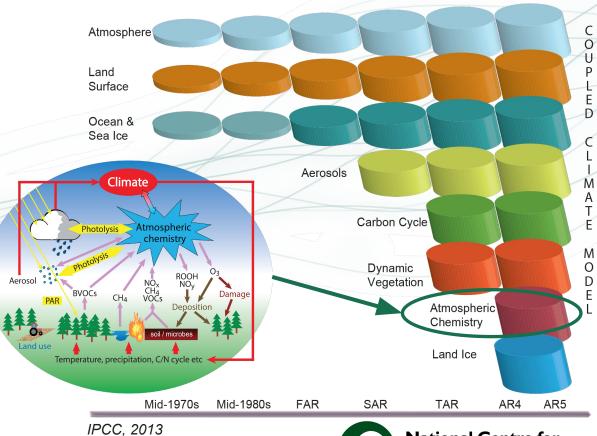
300 km A factor of 1000 The impact of a global temperature rise of 4 °C (7 °F) between these 30 km 300 m Total sig. wave height (m) 10-Sep-2012 21:30 (T+00.5) (valid: 10-Sep-2012 21z) **シンノノノノノノブノブノブ** ...the same scheme has to continue to work



Exoplanets

The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters

Mayne et al. 2014


Exploring the climate of Proxima B with the Met Office Unified Model Boutle et al. 2017

Development of Climate Models

Increasing the number and complexity of processes represented in climate models.

1990

FAR

Mid-1980s

Mid-1970s

1996

SAR

2001

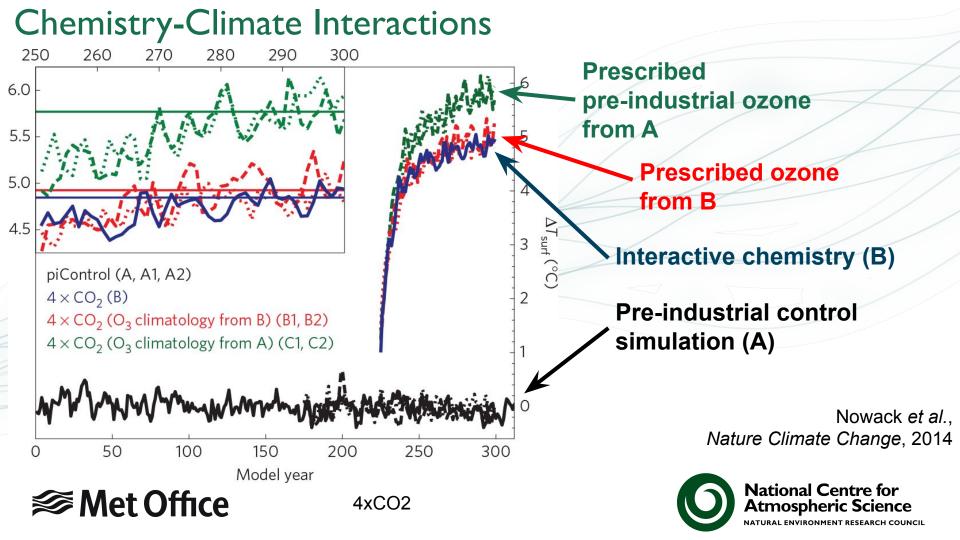
TAR

2007

AR4

2013

AR5

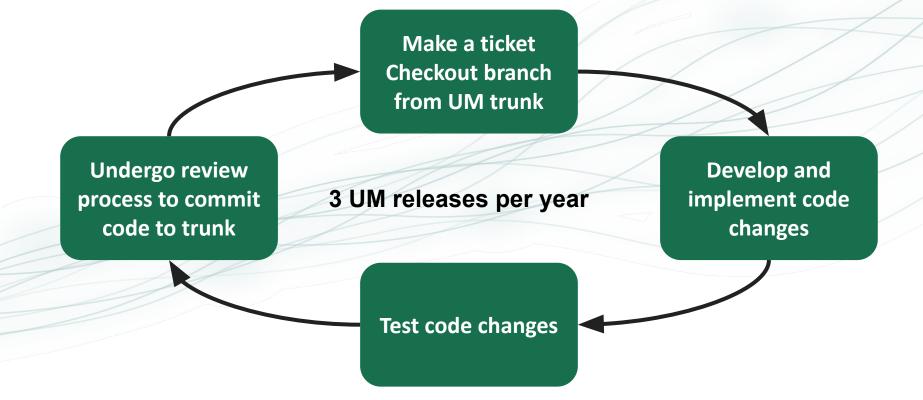


United Kingdom Chemistry and Aerosols

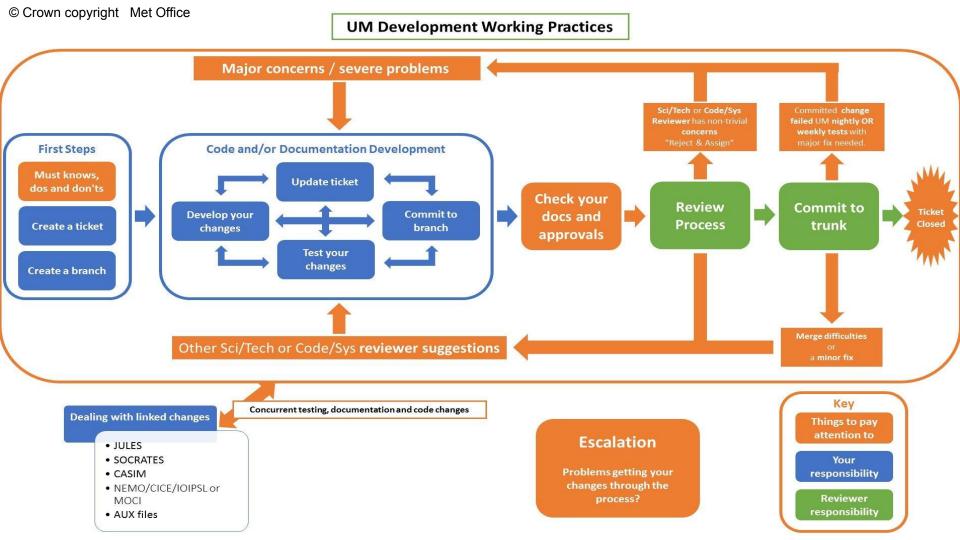
- In Cambridge we work on a part of the UM called the United Kingdom Chemistry and Aerosols sub-model, or UKCA.
- We develop new chemistry schemes for the model, with a focus on Chemistry-Climate Interactions.
- Here we usually include between 75-240 transported chemical species and hundreds of reactions to allow the model to accurately simulate changes to radiatively important gases such as ozone and methane, which can feed-back on the climate system.

Developing code for the Unified Model

The Met Office Unified Model


M Unified Model

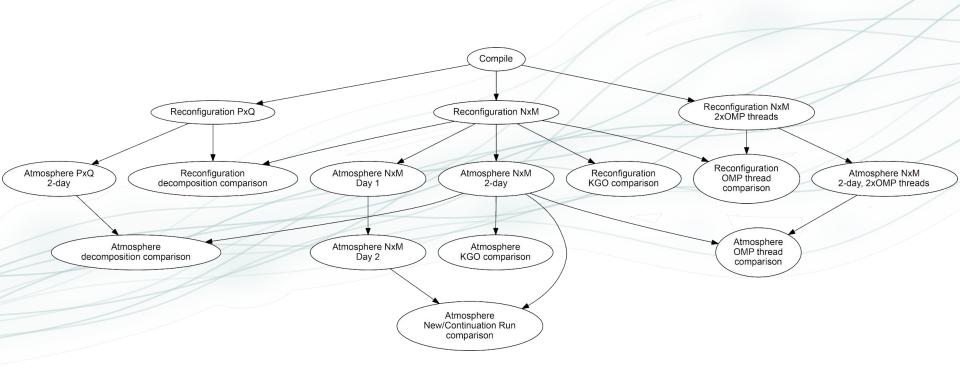
- Approximately 900,000 lines of code (mainly Fortran 2003).
- Over 200 active developers.
- Uses the Rose graphical namelist editor and the Cylc workflow engine, with the code held in subversion repositories, managed using FCM ("Flexible Configuration Management" mostly a wrapper around subversion).
- Majority of the development work is done by the Met Office.


Met Office Unified Model code development process

Similar process for science improvements to be included in operational configurations.

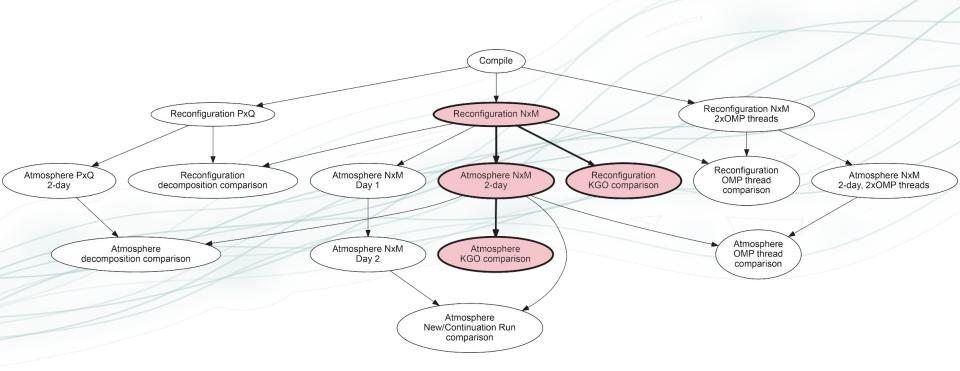
Code development process

- Science changes often require testing with long simulations that will take several weeks or more to run.
 - Diagnostics are then run through assessment and validation tools to produce many plots of standard metrics.
- All code changes are tested using the rose-stem utility, using a set of standard tests that compare against "Known Good Output" (KGO).
 - e.g. a climate resolution UKCA testing job takes 7 minutes to run
 2 model days on 144 cores, requiring 112GB of memory.
- You must be able to show that your change works when turned on and doesn't break anything when turned off.


rose-stem

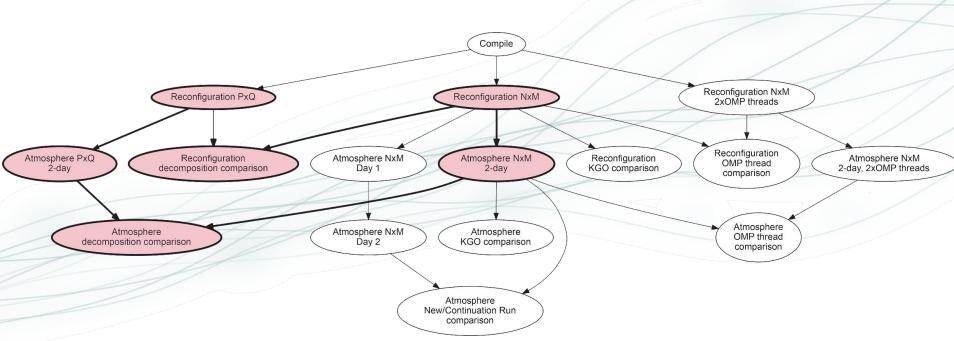
- At UM vn12.2 there are 328 UM testing jobs (inc. 33 UKCA jobs):
 - HPC jobs with Cray, GCC/Intel & GNU compilers
 - Linux jobs GCC/Intel, GCC/PGI, Clang/Intel, & GNU compilers
- Additional restart file creation tests and further tests for code standards, metadata, utilities, creation of boundary conditions, etc.
- Tests include KGO, restartability, OpenMP, & processor decomposition tests, with a range of optimisation levels:
 - "high", "fast", "safe", "debug", "rigorous".
- If a KGO test "breaks" you need to explain why and get approval to change the saved output.
- Tests protect your code and scientific configurations from being broken by another change.

rose-stem - Met Office testing framework



Done with different levels of compiler optimisation.

rose-stem - "Known Good Output" or KGO tests



KGO will likely be different with different levels of compiler optimisation.

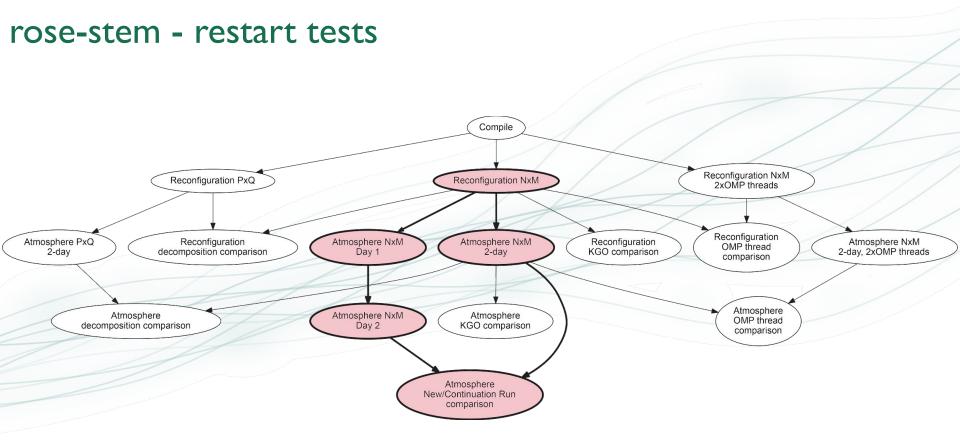
rose-stem - processor decomposition tests

Some changes may break KGO but should still pass the processor decomposition tests.

National Centre for

Atmospheric Science
NATURAL ENVIRONMENT RESEARCH COUNCIL

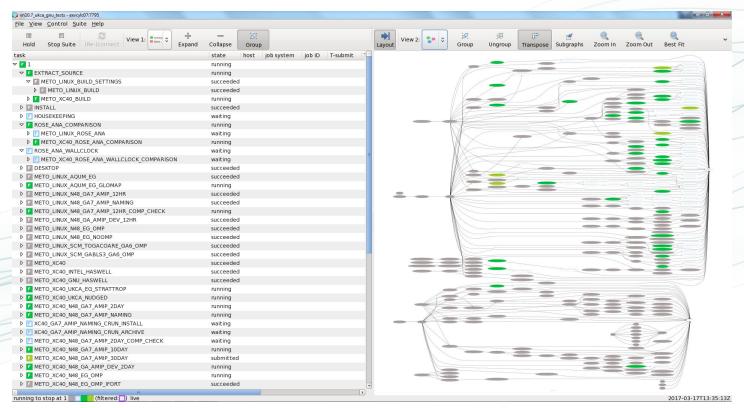
rose-stem - OpenMP tests Compile Reconfiguration NxM Reconfiguration NxM Reconfiguration PxQ 2xOMP threads Reconfiguration Atmosphere PxQ Reconfiguration Atmosphere NxM Atmosphere NxM Reconfiguration Atmosphere NxM OMP thread KGO comparison 2-day, 2xOMP threads 2-day decomposition comparison Day 1 2-day comparison Atmosphere Atmosphere Atmosphere NxM Atmosphere OMP thread KGO comparison decomposition comparison Day 2 comparison Atmosphere


KGO should be identical with or without OpenMP, although the OMP test should still pass even if the KGO one does not.

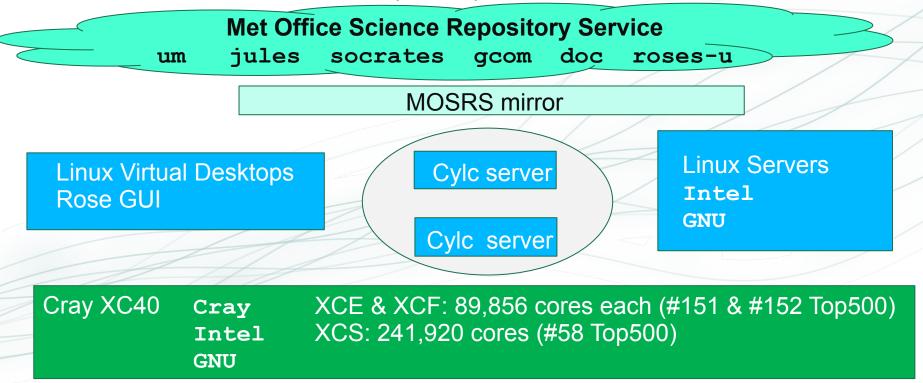
National Centre for

Atmospheric Science
NATURAL ENVIRONMENT RESEARCH COUNCIL

New/Continuation Run comparison



Some changes may break KGO but should still pass the restartability tests.


rose stem --group=developer,ukca

Met Office Infrastructure (2021)

MASS Tape Archive

Outside the Met Office

But what if you don't have access to the Met Office infrastructure?

What can UK university students and researchers access?

- You should be able to get access to the UM source code and the tools to run the UM.
- You may be able to get access to HPC resources, e.g. ARCHER2 or Monsoon2 etc.
- You may be able to get access to an analysis platform, e.g. JASMIN.
- Access to rose-stem and the internal Met Office tools could be limited or not available at all.

What do I mean by "virtually"?

What do I mean by "virtually"?

- A Virtual Machine configuration has been developed to allow people to easily use FCM, Rose, & Cylc.
- Uses Vagrant and VirtualBox (for a PC or server) or AWS.
- UM Systems Team have set-up running the UM in an Ubuntu guest image.

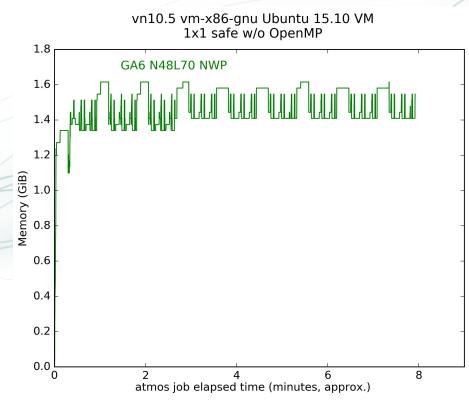
JASMIN

Met Office Virtual Machine on GitHub:

https://github.com/metomi/metomi-vms

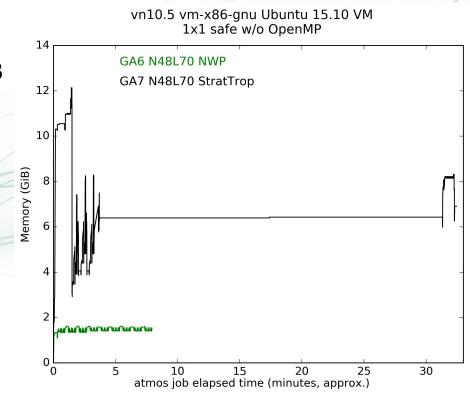
Uses for the VM

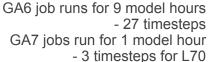
- 1. Developing & testing code changes
 - Faster turnaround time
 - Approximately 10 minutes to compile from scratch, with only a few seconds to recompile.
 - Small versions of standard jobs run in a few minutes on 2 cores.
- 2. Training


What do I mean by "virtually"?

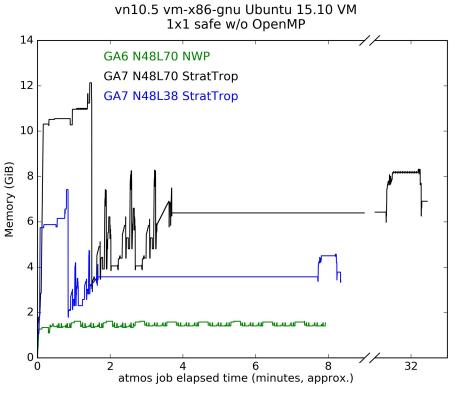
- To run a basic UM test suite, the VM needs around 3GB of memory.
- Initial thoughts were that the main issue with running UKCA would (probably!) be the memory requirement.
 - A standard UKCA job requires an additional 137 3D fields to be added to the restart file, along with further temporary arrays allocated at run-time and any extra required for diagnostic output.
 - Usually require at least 112GB of memory at climate resolution (192x144x85 grid points).

Basic test suite uses ~1.6GiB

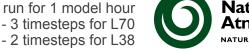



GA6 job runs for 9 model hours - 27 timesteps

Basic test suite uses ~1.6GiB Low resolution UKCA suite uses ~12.2GiB



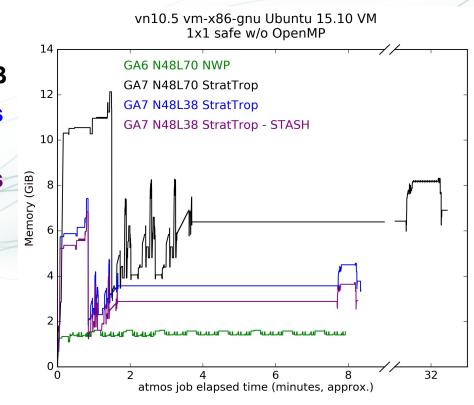
Basic test suite uses ~1.6GiB


Low resolution UKCA suite uses ~12.2GiB

Low resolution UKCA suite (low top) uses ~7.4GiB

GA6 job runs for 9 model hours
- 27 timesteps
GA7 jobs run for 1 model hour
- 3 timesteps for L70

National Centre for Atmospheric Science


Basic test suite uses ~1.6GiB

Low resolution UKCA suite uses ~12.2GiB

Low resolution UKCA suite (low top) uses

~7.4GiB

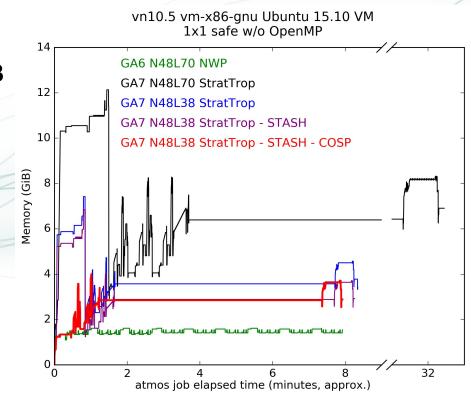
Low resolution UKCA suite (low top) uses ~6.9GiB when all diagnostic output requests are removed

GA6 job runs for 9 model hours
- 27 timesteps
GA7 jobs run for 1 model hour
- 3 timesteps for L70

- 2 timesteps for L38

National Centre for Atmospheric Science
NATURAL ENVIRONMENT RESEARCH COUNCIL

Basic test suite uses ~1.6GiB


Low resolution UKCA suite uses ~12.2GiB

Low resolution UKCA suite (low top) uses

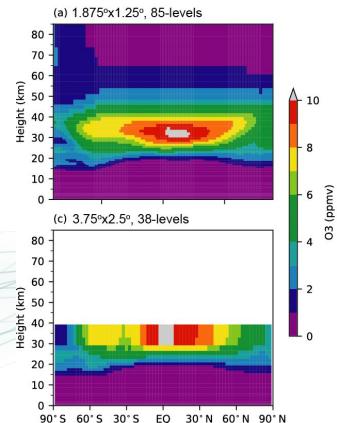
~7.4GiB

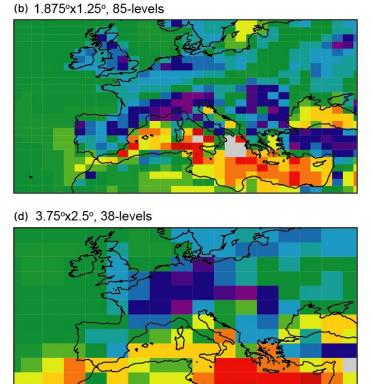
Low resolution UKCA suite (low top) uses ~6.9GiB when all diagnostic output requests are removed

Low resolution UKCA suite (low top) uses ~4.0GiB when all diagnostic output requests are removed and the COSP (CFMIP Observation Simulator) diagnostics package is not turned on

 Met Office

GA6 job runs for 9 model hours
- 27 timesteps
GA7 jobs run for 1 model hour
- 3 timesteps for L70


- 2 timesteps for L38



National Centre for Atmospheric Science

Climate resolution 192x144x85 grid points

VM-suitable resolution 96x72x38 grid points

60

50

20

- 10

What do I mean by "virtually everything"?

Helpful(?!) Errors

- However, there seemed to be an issue with using the GNU compiler, as the code failed with the following error on timestep 3:
- ? Error from routine: EG BICGSTAB MIXED PREC
- ? Error message: NaNs in error term in BiCGstab
- ? This is a common point for the model to fail if it
- ? has ingested or developed NaNs or infinities
- ? elsewhere in the code.
- ? See the following URL for more information:
- ? https://code.metoffice.gov.uk/trac/um/wiki/KnownUMFailurePoints
- After some debugging, the issue appeared to be with the UKCA routine
 asad hetero.F90, which couples the chemistry and aerosol schemes.

Precision

The UM uses compiler flags to make **REAL**s double-precision, so rather than using

REAL(KIND=8) :: a

or

INTEGER, PARAMETER :: dp=SELECTED REAL KIND (15,300)

REAL (KIND=dp) :: a

the UM will use

-r8 (Intel), -s default64 (Cray), -fdefault-real-8 (GNU)

AND there is still the occasional 1.0d0 statement.

But what about TINY (1.0d0)?

• Intel (-r8):

```
tiny(1.0) = 2.225073858507201E-308

tiny(1.0d0) = 2.225073858507201E-308
```

• Cray (-s default64)

```
tiny(1.0) = 2.22507385850720138E-308

tiny(1.0d0) = 2.22507385850720138E-308
```


But what about TINY (1.0d0)?

• Intel (-r8): tiny(1.0) = 2.225073858507201E-308tiny(1.0d0) = 2.225073858507201E-308• Cray (-s default64) tiny(1.0) = 2.22507385850720138E-308tiny(1.0d0) = 2.22507385850720138E-308GNU (-fdefault-real-8) tiny(1.0)2.2250738585072014E-308 tiny(1.0d0) =3.36210314311209350626267781732175260E-4932 Effectively a = 1.0d0 = 1.0

a = tiny(1.0d0) = 0.0

```
    Met Office
```

but

But what about TINY (1.0d0)?

• Intel (-r8):
tiny(1.0) = 2.225073858507201E-308
tiny(1.0d0) = 2.225073858507201E-308

• Cray (-s default64)

```
tiny(1.0) = 2.22507385850720138E-308

tiny(1.0d0) = 2.22507385850720138E-308
```

GNU (-fdefault-real-8)

```
tiny(1.0) = 2.2250738585072014E-308

tiny(1.0d0) = 3.36210314311209350626267781732175260E-4932
```

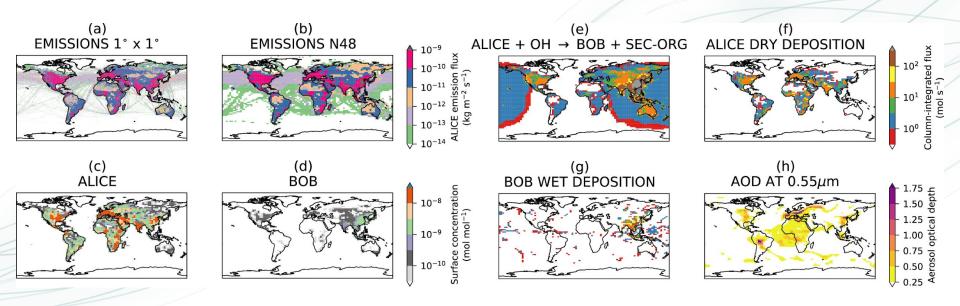
GNU (-fdefault-real-8 -fdefault-double-8)

```
tiny(1.0) = 2.2250738585072014E-308
tiny(1.0d0) = 2.2250738585072014E-308
```


What do I mean by "everything"?

Rose stem (again!)

- These compiler flag changes went into the UM trunk at vn10.7.
- There are rose-stem testing jobs for several UM configurations (now also including UKCA) on the VM.
- Equivalent low-resolution UKCA jobs have also been added to the Met Office HPC tests.
 - One is included as part of the standard developer group that must be used when making any change.


Training

- What if we could use the VM for training?
- This would mean:
- 1. Everyone runs on their own dedicated computer.
 - Simpler set-up than for current production runs.
- 2. Researchers doing the tutorials can easily do the training tasks without needing a supercomputer account.
 - "Try before you buy"

UKCA Training

Conclusions

Conclusions

- Testing environments, as well as production environments, are required to be able to develop code changes in a timely manner.
- A Virtual Machine environment has been developed by the Met Office that easily allows users to install their own copy of the UM.
- Standard tests have also been implemented on this system that can be used when developing new code changes.
- This creates a standard system that all non-Met Office developers can use to quickly implement and test changes, prior to running on a HPC.

Geosci, Model Dev., 11, 3647–3657, 2018 https://doi.org/10.5194/gmd-11-3647-2018 Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Using a virtual machine environment for developing, testing, and training for the UM-UKCA composition-climate model, using Unified Model version 10.9 and above

Nathan Luke Abraham^{1,2}, Alexander T. Archibald^{1,2}, Paul Cresswell³, Sam Cusworth³, Mohit Dalvi³, David Matthews³, Steven Wardle³, and Stuart Whitehouse³

¹Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK

²National Centre for Atmospheric Science, UK

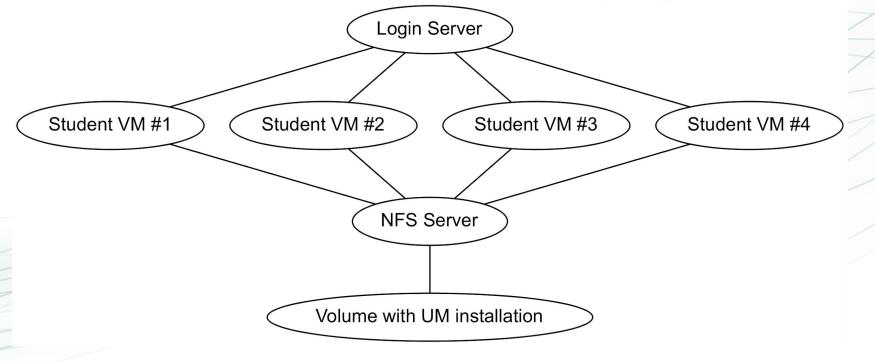
Correspondence: Nathan Luke Abraham (luke.abraham@atm.ch.cam.ac.uk)

Received: 8 May 2018 – Discussion started: 18 May 2018 Revised: 10 August 2018 - Accepted: 23 August 2018 - Published: 6 September 2018

Met Office, FitzRoy Road, Exeter, EX1 3PB, UK

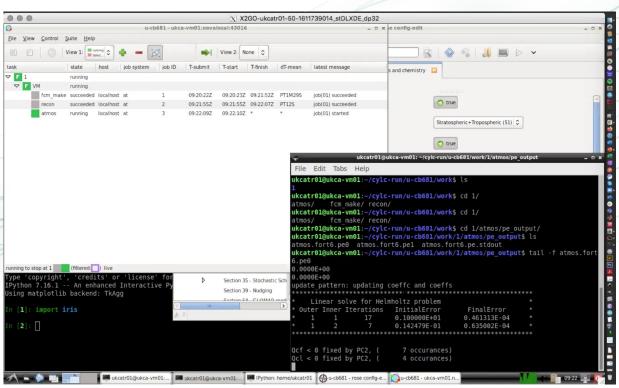
Step	ARCHER (XC30)	XCS-C (XC40)	Virtual Machine
Cray cce initial compile	34 minutes	15 minutes	-
Cray cce incremental compile	5-7 minutes	3 minutes	
Intel ifort initial compile	19 minutes	9 minutes	<u>-</u>
Intel ifort incremental compile	6-7 minutes	1 minute	-
GNU gfortran initial compile		4 minutes	8-10 minutes
GNU gfortran incremental compile	<u></u>	2-3 minutes	45 seconds
Reconfiguration task, used to produce the initial conditions file.	3-4 minutes (Intel, 6×4)	15-30 seconds (GNU, 4×9)	25-30 seconds (GNU, 1×2)
Atmosphere task	40 seconds (Intel, 6×4)	45 seconds (GNU, 4×9)	12 minutes (GNU, 1×2)
 Met Office			National Centre for Atmospheric Science

Compiler settings	Safe	Safe	Rigorous	
Number of UM OpenMP threads	0	2	2	
Approximate run-time on 2-core VM (1×2) (minutes)	8	11	29	
Approximate run-time on 4-core VM (1×2) (minutes)	8	4	17	
Approximate run-time on 4-core VM (1×4) (minutes)	5	8	22	
Approximate run-time on 8-core VM (1×4) (minutes)	5	3	14	
Approximate run-time on 8-core VM (1×8) (minutes)	3	6	26	
Approximate run-time on 16-core VM (1×8) (minutes)	3	3	22	


Compile type	GNU gfortran compiler flags	Number of UM OpenMP threads	Total VM memory required (GB)
safe	-02 -Werror	0	6
safe	-02 -Werror -fopenmp	2	6
rigorous	-00 -Wall -ffpe-trap=invalid,zero -fbounds-check	2	8
	-Warray-bounds -fcheck-array-temporaries -finit-real=nan -fimplicit-none		
	-fopenmp		

Training VMs on JASMIN

Ansible playbooks for this system are available via GitHub: https://github.com/theabro/ukca-playbook


Training VMs on JASMIN

https://www.youtube.com/watch?v=5V3RBCYTQvg

Students could connect to their VM using a number of methods - e.g. X2Go, MobaXTerm, or Terminal/X11

Set-up video with demonstration available on the UKCA YouTube channel.

