Dry Deposition in UKCA

David Stevenson & Federico Centoni (dstevens@staffmail.ed.ac.uk) The University of Edinburgh

UKCA Training Course, Cambridge, 5-9 January 2015

http://macaqueedinburgh.wordpress.com/

MACAQUE: Modelling and measuring Atmospheric Composition and Air QUality at Edinburgh

Acknowledgements

- Federico Centoni (UoE)
 Much of this is his PhD work
- David Fowler, Eiko Nemitz (CEH Edinburgh)
- Catherine Hardacre, Oliver Wild (Lancaster Uni), Lisa Emberson (SEI-York)
- Gerd Folberth (Met Office)
- Luke Abraham
- Mike Sanderson (Met Office)

Outline

- What is dry deposition?
- Why is it interesting/important?
- How is it represented in UKCA?
- Model improvements underway/planned
- Research questions related to dry deposition

What is dry deposition?

- Removal of gases and aerosols by turbulent transfer and uptake at the Earth's surface
- Process operates on air in boundary layer
- Important sink for many species (O₃, H₂O₂, NO₂, PAN, HNO₃, NH₃, aerosols, CH₄, H₂, CO, ...)
- Controlled by: BL characteristics depth, turbulence, diffusion, surface properties (vegetation – stomata, leaf area),...
- Strictly: surface-atmosphere exchange reverse process operates for some species under some conditions (e.g. NH₃)

Annual mean O₃ deposition flux

(Year 2000, UKCA vn7.3)

Sources/sinks of tropospheric ozone (yr 2000)

Stevenson et al 2006; Royal Society, 2008

O₃ dry deposition 'velocities' in the HTAP models

Figure 3. Normalised average monthly O_3 dry deposition at grid cells with 100 % land cover class coverage. Model fluxes are shown in grey and the ensemble average in red.

Hardacre et al. (2014)

O₃ deposition to different land-cover types

Figure 4. Normalised O_3 dry deposition partitioned to land cover classes using the OW11 (**a**, **c**) and GCLF (**b**, **d**) LCCs respectively. Upper panels show the contribution of each LCC to the annual global O_3 dry deposition flux, and lower panels show the average flux to each LCC. The box and whiskers for each land class represent the median, quartiles and 10th/90th percentiles.

Hardacre et al. (2014)

Resistance analogy/deposition velocity ('Wesely-type schemes', e.g., Wesely, 1989)

Consider three 'resistances' in series:

R_a: Aerodynamic resistance Depends on surface type

R_b: **B**oundary layer resistance ('quasi-laminar sub-layer resistance') Depends on species (diffusion coefficient)

R_c: **C**anopy (/surface) resistance Depends on surface type & species

Deposition velocity:

$$V_d = 1/(R_a + R_b + R_c)$$

= Flux/Concentration (at ref ht)
= [kg m⁻² s⁻¹] / [kg m⁻³] = m s⁻¹

(Analogy:

Flux ≡ Current; Concentration ≡ Voltage; Voltage = Current x Resistance, V=IR)

	R _a
	R _b
	R _c
Earth's surfac	e

Expanded surface/canopy resistance terms

Federico Centoni, after Wesely (1989)

Aside: O₃ impacts via deposition

Ozone damages plants

Ozone enters a plant via stomata; attacks plant cells

Ozone damages crops

WHEAT cv. CHAK-86 TR: AMBIENT AIR

O₃ injury to wheat, Pakistan (courtesy of A. Wahid)

Ozone impact

WHEAT cv. CHAK-86 TR: UNFILTERED AIR

Chamber impact

WHEAT cv. CHAK-86

O₃ impacts on vegetation

'FACE' experiments (Free Air CO₂ enrichment) Also ozone – see <u>http://aspenface.mtu.edu</u>

Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis

VICTORIA E. WITTIG*, ELIZABETH A. AINSWORTH*†, SHAWNA L. NAIDU‡, DAVID F. KARNOSKY§ and STEPHEN P. LONG*

Indirect O₃ radiative forcing, via reduced C-sequestration

Sitch et al. (2007)

Expanded surface/canopy resistance terms

Federico Centoni, after Wesely (1989)

Aerodynamic resistance: R_a

• Depends on BL stability (heat flux), surface roughness, friction velocity, etc.

$$R_a = (\ln(Z/Z_0) - \varphi)/ku_*$$

- Varies with surface type (use 'tile' approach), but independent of species
- UKCA subroutine: **ukca_aerod.F90**

Tile approach for land cover

 Each grid square is assigned a fraction of nine different surface types, based on land-cover mapping, e.g.:

Overall grid properties calculated based on combination of different tile fractions. No sub-grid-scale spatial distribution information, just fractions.

(Other surface types: Broadleaf trees, shrubs, C4 grass, ice, bare soil)

Quasi-laminar sub-layer resistance: R_b

• Depends on diffusion coefficient of species, friction velocity, etc.

$$R_b = (\frac{Sc}{Pr})^{2/3}/ku_*$$

Sc: Schmidt number (diffusion vs viscosity)

Pr: Prandtl number (0.72 for lower atmosphere)

- Varies with species diffusivity, independent of surface
- UKCA subroutine: **ukca_aerod.F90**

Surface/canopy resistance: R_c

- Multiple influences, dependent on surface type, species, environmental conditions...
- Non-vegetated surfaces: water, ice, soil, urban
- Vegetated surfaces:
 - Canopy structure (e.g., grass vs. forest)
 - Stomatal uptake
 - Soil moisture, time of day
 - Non-stomatal (leaf cuticle/stem uptake)
 - Leaf Area Index (LAI = leaf surface area/land area)
- UKCA subroutine: ukca_surfddr.F90

Model Name	Formula
O3	O ₃
NO	NO
NO2	NO_2
NO3	NO_3
N2O5	N_2O_5
HONO2	HNO ₃
HONO	HONO
ISON	
H2SO4	H_2SO_4
H2O2	H_2O_2
H2	H_2
CH3OOH	CH ₃ OOH
HACET	
ROOH	Other organic peroxides
PAN	
PPAN	- Peroxy Acetyl Nitrates
MPAN	
CO	CO
CH4	CH_4
NH3	NH ₃
•	
SO2	SO_2
DMSO	
MSA	
OnitU	
SEC_ORG	Any other secondary organics
ORGNIT	Organic nitrogen

Table 16: Species treated by the interactive dry deposition scheme.

Examples to follow focus on ozone, but NB many species dry deposited

Abraham et al. (2012)

Bug fix 1: Stomatal conductance

 Stomatal conductance (g_{sto}) currently erroneously contains a (non-diurnally varying) soil conductance term, so it exhibits the wrong diurnal cycle – important where stomatal uptake is a major term in R_c

Diurnal cycles of stomatal conductance over southern Scotland for different seasons

Global impact of the stomatal bug fix

Bug fix 2: In-canopy resistance

In the current UKCA versions, the in-canopy resistance term (R_{ac}) is missing (i.e. zero) everywhere!

Global impact of the R_{ac} bug fix

Mean Annual (2000) ΔO_3 (Base -> Base Rac fix)

Adding the resistance term reduces deposition, particularly over forests, so O_3 concentrations increase.

[Caveat: I am unsure if R_{ac} terms still need to be added for all species: I think here only the O₃ R_{ac} terms have been added; this is probably important.]

Further code developments: Zhang et al. (2003)

Federico Centoni

Impacts of Zhang et al scheme on O₃ deposition flux & surface O₃ concentration

Federico Centoni

Currently evaluating whether the Zhang scheme improves comparisons with observations

Modelling dry deposition: How do we formulate models?

Both sorts of schemes implemented in UKCA model

% change in O_3 dep flux, single level scheme minus multi-level scheme (July monthly mean)

Federico Centoni

Global total O₃ dep flux remains at ~1100 Tg/yr

Big differences in simulated surface O₃ ...

Change in O_3 (ppb), single level scheme minus multi-level scheme (July monthly mean)

Federico Centoni

Future research questions related to dry deposition

- Evaluation of more sophisticated process-based schemes – do they actually improve things?
- Sensitivity to climate change/land-cover change
 - Do the new schemes change this?
 - Stomatal vs non-stomatal partitioning (crops/RF)
 - Impacts beyond ozone (e.g. N-dep)
 - Behaviour during extreme events (e.g. heatwaves)
 - Past as well as future (e.g. O_3 trends)
- Integration of 'surface exchange' (deposition and emissions; also BL mixing) processes

Summary

- Most of the fixes/changes implemented in the deposition scheme induce large changes in surface level ozone
 - Reminds us that the way dry deposition is represented in models has a large impact on results
 - Dry deposition is a large source of uncertainty
- Focussed on ozone, but deposition also very important for aerosols (e.g., BC) and other species
- Plenty of work still to do (evaluation, further development, climate change impacts, etc.)