

Re-defining the standard - CRI-Strat: a new framework for chemistry developments within the UKCA model

Scott Archer-Nicholls, James Weber

Luke Abraham, Matthew Shin, Maria Russo, Douglas Lowe, Steven Utembe, Brian Kerridge, Barry Latter, Richard Siddans, Michael Jenkin, Fiona O'Connor, Oliver Wild, Alex Archibald

Email: sa847 at cam.ac.uk

Modelling Tropospheric Chemistry

Recipe for Tropospheric Ozone

- Catalytic cycle of tropospheric ozone production, Atkinson 2004
- OH radical can oxidise VOCs (and CO) to make peroxy radicals; e.g. for the simplest VOC:

 $\begin{array}{c} \mathrm{CH}_{4} + \mathrm{OH} \rightarrow \mathrm{CH}_{3}^{\cdot} + \mathrm{H}_{2}\mathrm{O} \\ \mathrm{CH}_{3} + \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}\mathrm{O}_{2} \end{array}$

• Peroxy radicals react quickly with NO to make NO2, which photolyses to make ozone:

 $CH_{3}O_{2}^{\cdot} + NO \rightarrow NO_{2} + CH_{3}O^{\cdot}$ $NO_{2} + h\nu \rightarrow NO + O$ $O_{2} + O + M \rightarrow O_{3} + M$

 O_3 is a by-product of VOC oxidation reactions, catalysed by NO_x

Recipe for Tropospheric Ozone

Problem: Deep Complexity of Volatile Organic Compound (VOC) Chemistry

- VOC and NOx photochemistry drives formation of Ozone and secondary organic aerosols.
- Very complicated many 1000's of VOCs identified in the atmosphere.
- Need to parameterise tropospheric chemistry in 3D models. But how can we be confident the necessary simplifications preserve key processes?

Models vs Reality

"Essentially, all models are wrong, but some are useful" George Box

"Traditional" Chemical mechanism development (e.g. for StratTrop)

Issues

- How can we be sure the most "important" reactions are captured?
- Impossible to separate biases due to mechanism from other model errors.
- Risk of compounding errors as mechanism is expanded different levels of complexity or sources of kinetic data for different aspects of chemistry.
- No traceability to explicit mechanisms.

The Common Representative Intermediates Approach

Common Representative Intermediates

Master Chemical Mechanism (MCM) chemistry highlights the complex oxidation of one C_6 alkane.

The CRI approach is one which conserves the O_3 forming potential of VOCs. Lumping the intermediate reactive products (RO₂ and their daughters).

Each version of CRI fully **traceable** to a version of the MCM

Further reductions: primary VOCs are lumped only if ozone production is conserved, as tested by rigorous evaluation against MCM.

CRI Implementation in UKCA

Common Representative Intermediates (CRIv2.1-R5) **traceable** to MCMv3.2

Extended with Stratospheric & aerosol chemistry to make CRI-Strat+GLOMAP:

- 233 species (181 transported) and 724 reactions

	StratTrop + GLOMAP-mode	CRI-v2-R5	CRI-Strat	CRI-Strat + GLOMAP-mode
No. Species	87	198	219	233
No. Tracers	83	146	167	181
No. Non transported prognostics	4	52	52	52
No. Peroxy radicals [*]	9	47	47	47
No. Emitted species	23	27	27	38
No. Photolysis reactions	60	100	124	128
No. Bimolecular reactions	212	451	536	554
No. Termolecular reactions	25	29	36	39
No. Heterogeneous reactions	8	0	5	8
No. Wet deposited species	34	74	80	83
No. Dry deposited species	41	124	128	131

* Peroxy radicals are transported tracers in the StratTrop mechanism,

Additional chemistry to StratTrop:

- Alkanes & alkenes up to C4
- Aromatics (benzene, toluene & o-xylene).
- Detailed BVOC chemistry.
- Organic nitrates (RO2+NO → RONO2) for all relevant species.
- Self- and cross- reactions parameterized for all 47 RO2 species.
- All available VOC emission classes mapped.

CRI Implementation in UKCA AKA Alice and Bob on steroids

Followed step-by-step process:

- Add new species to STASHMASTER_A file (use existing species where possible), plus m_* and c_* values for each species
- Add bimolecular, termolecular and photolysis reactions for all new species to ukca_chem_master (use existing reactions where possible)
- Make emission files for species that are emitted and code to read emissions
- Add wet and dry deposition coefficients for species that are deposited
- Copied stratospheric and aerosol chemistry as needed
- Test, run, break, debug, cry, rinse, repeat.....

... UKCA training course exercises proved invaluable

STASHMASTER

1	1	34	161	10	CARB14	MASS	MIXIN	IG RAT	IO AFTE	R TSTEP					
2	2	0	j 1	Í.	1	2	1	40	11	0	0	0	1	0	1
3	000000	0000000	00000	L D O	000000	0000	0000	000000	0000000	0001 j	1 j				-
4	1	0	-99	-9	99 -9	9 – 99	-99	-99	-99	-99 -99	-99				
5	0	0	i 🌓	L	65	0		0	0	0	0				
#				T											
1	1	34	16	(CARB17	MASS	MIXIN	IG RAT	IO AFTE	R TSTEP					
2	2	0	i i	I	1	2	1	40	11	0	0	0	1	0	1
3	000000	0000000	0000001	LØ	000000	0000 I	0000	000000	0000000	0001 j	1 j				
4	1	0	-99	-	99 -9	9 – 99	-99	-99	-99	-99 -99	-99				
5	0	0	j D		65	0		0	0	0	0				
#															
1	1	34	163		CARB11	A MASS	MIXI	NG RAT	TIO AFT	ER TS					
2	2	0	j 1	i	1	2	1	40	11	0	0	0	1	0	1
3	000000	0000000	00000001	LÖ	000000	0000	0000	000000	0000000	0001 j	1 j				
4	1	0	99	-	99 -9	9 –99	-99	-99	-99	-99 -99	-99				
5	0	0	j 0	1	65	0		0	0	0	0				
#															
1	1	34	164	1	ARB7	MASS M	IXING	RATIC	0 AFTER	TSTEP					
2	2	0	j 1	i	1	2	1	40	11	0	0	0	1	0	1
3	000000	0000000	00000001	LÒ	000000	0000 I	0000	000000	0000000	0001 j	1 j				
4	1	0	99	-	9 -9	9 –99	-99	-99	-99	-99 -99	-99				
5	0	0	j 0	1	65	0		0	0	0	0				
#															
1	1	34	165	1	CARB10	MASS	MIXIN	IG RAT	IO AFTE	R TSTEP					
2	2	0	j 1	İ	1	2	1	40	11	0	0	0	1	0	1
3	000000	0000000	00000001	LØ	000000	0000	0000	000000	0000000	0001	1				
4	1	0	-99	-	99 -9	9 -99	-99	-99	-99 -	-99 -99	-99				
5	0	0	0		65	0		0	0	0	0				
#						-	-	-	-	-					
1	1	34	166		CARB13	MASS	MIXIN	IG RAT	IO AFTE	R TSTEP					
2	2	0	į L	i	1	2	1	40	11	0	0	0	1	0	
3	000000	0000000	0000001	LØ	000000	0000	0000	000000	0000000	0001	1				
4	1	0	-99	- 9	99 -9	9 -99	-99	-99	-99	-99 -99	-99				
5	0	0	i 🕨	1	65	0		0	0	0	0				
#				T			-	-			-				
1	1	34	16	(CARB16	MASS	MIXIN	IG RAT	IO AFTE	R TSTEP					
2	2	0			1	2		40	11	0	0	0	1	0	
3	000000	0000000	000000	LþØ	000000	0000	0000	000000	0000000	0001	1				
4	1	0	-99	-9	99 -9	9 -99	-99	-99	-99	-99 -99	-99				
5	0	0	0		65	0		0	0	0	0				

 Using existing tracers where possible and filling in spaces up to S34i150

• S34i151 to S34i249 all new CRI tracers

1 2 3 4 5	1 2 000000 1 0	34 0 00000000 0 0	872 1 0000008 -99 0	RTX2202 1 000000000 -99 -99 65	MASS 2 000 -99 0	MIXING 40 0000000 -99 - 0	RATIO A 11 00000000 -99 -99 0	FTER TS 0 000001 -99 -99 0	0 3 -99 0	0	0
#											
1	1	34	873	RTX2402	MASS	MIXING	RATIO A	FTER TS			
2	2	0	1	1	2	40	11	0	0	0	0
3	000000	0000000	000008	300000000	000	0000000	00000000	000001	3		
4	1	0	-99	-99 -99	-99	-99 -	-99 –99	-99 -99	-99		
5	0	0	0	65	0	0	0	0	0		
#											
1	1	34	874	NRTX280	2 MAS	S MIXING	G RATIO	AFTER TS			
2	2	0	1	1	2	40	11	0	0	0	0
3	000000	0000000	000008	000000000	000	0000000	00000000	000001	3		
4	1	0	-99	-99 -99	-99	-99 -	-99 –99	-99 -99	-99		
5	0	0	0	65	0	0	0	0	0		
#											
1	1	34	875	RTX2802	MASS	MIXING	RATIO A	FTER TS			
2	2	0	1	1	2	40	11	0	0	0	0
3	000000	0000000	000008	00000000	000	0000000	00000000	000001	3		
4	1	0	-99	-99 -99	-99	-99 -	-99 -99	-99 -99	-99		
5	0	0	0	65	0	0	0	0	0		

• S34i872 to S34i913 New Peroxy Radical Species

• Defined new RO2 type – non-transported prognostics that behave like normal chemical species within solver

CRIv2-R5 KPP file http://cri.york.ac.uk/home.htt

Ukca_chem_master.F90

{190:095} HC00H+0H=H02 : 4.50D-13 ; {191:096} CH3C02H+0H=CH300 : 8.00D-13 ; {192:097} CH300+N0=HCH0+H02+N02 : 0.999*ARR2(3.00D-12, -280.0_dp, TEMP) ; {193:098} C2H502+N0=CH3CH0+H02+N02 : 0.991*ARR2(2.60D-12, -365.0_dp, TEMP) ; {194:099} RN1002+N0=C2H5CH0+H02+N02 : 0.980*ARR2(2.80D-12, -360.0_dp, TEMP) ; {195:100} IC3H702+N0=CH3C0CH3+H02+N02 : 0.958*ARR2(2.70D-12, -360.0_dp, TEMP) ; {196:101} RN1302+N0=CH3CH0+C2H502+N02 : 2.40d-12*EXP(360.0/temp)*0.917*0.398 ; {197:102} RN1302+N0=CARB11A+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.917*0.602 ; {198:103} RN1602+N0=RN15A02+N02 : 2.40d-12*EXP(360.0/temp)*0.877 ; {199:104} RN1902+N0=RN18A02+N02 : 2.40d-12*EXP(360.0/temp)*0.788 ; {200:105} RN13A02+N0=RN1202+N02 : 2.40d-12*EXP(360.0/temp) ; {201:106} RN16A02+N0=RN1502+N02 : 2.40d-12*EXP(360.0/temp) ; {202:107} RA1302+N0=CARB3+UDCARB8+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.918 ; {203:108} RA1602+N0=CARB3+UDCARB11+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.889*0.7 ; {204:109} RA1602+N0=CARB6+UDCARB8+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.889*0.3 ; {205:110} RA19A02+N0=CARB3+UDCARB14+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.862 ; {206:111} RA19C02+N0=CARB9+UDCARB8+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.862 ; {207:112} H0CH2CH202+N0=HCH0+HCH0+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.995*0.776 {208:113} H0CH2CH202+N0=H0CH2CH0+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.995*0.224 ; {209:114} RN902+N0=CH3CH0+HCH0+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.979 {210:115} RN1202+N0=CH3CH0+CH3CH0+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.959 ; {211:116} RN1502+N0=C2H5CH0+CH3CH0+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.936 ; {212:117} RN1802+N0=C2H5CH0+C2H5CH0+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.903 ; {213:118} RN15A02+N0=CARB13+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.975 ; {214:119} RN18A02+N0=CARB16+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.946 ; {215:120} CH3C03+N0=CH300+N02 : 8.10d-12*EXP(270.0/temp) ; {216:121} C2H5C03+N0=C2H502+N02 : 8.10d-12*EXP(270.0/temp) ; {217:122} HOCH2CO3+NO=HO2+HCHO+NO2 : 8.10d-12*EXP(270.0/temp) {218:123} RN802+N0=CH3C03+HCH0+N02 : 2.40d-12*EXP(360.0/temp) ; {219:124} RN1102+N0=CH3C03+CH3CH0+N02 : 2.40d-12*EXP(360.0/temp) ; {220:125} RN1402+N0=C2H5C03+CH3CH0+N02 : 2.40d-12*EXP(360.0/temp) ; {221:126} RN1702+N0=RN16A02+N02 : 2.40d-12*EXP(360.0/temp) ; {222:127} RU1402+N0=UCARB12+H02+ N02 : 2.40d-12*EXP(360.0/temp)*0.900*0.252 ; {223:128} RU1402+N0=UCARB10+HCH0+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.900*0.7 {224:129} RU1202+N0=CH3C03+H0CH2CH0+N02 : 2.40d-12*EXP(360.0/temp)*0.7 ; {225:130} RU1202+N0=CARB7+C0+H02+N02 : 2.40d-12*EXP(360.0/temp)*0.3 ; {226:131} RU1002+N0=CH3C03+H0CH2CH0+N02 : 2.40d-12*EXP(360.0/temp)*0.5 ;

! B143 IUPAC2007 see also asad bimol	
ratb t1(143, '0H '.'C3H8 '.'n-Pr00 '.'H20 '.' '. &	,
'.7.60e-12. 0.00. 585.00. 0.00. 0.00. 0.00. 0.00. ti+t+st.0.0.107).&	
! B143 - Different rates in CRL, and different product (equiv. to n-Pr00)	
rath t1(143, '0H '.'(3H8 '.'RN1002 '.'	
(1,1,1,2,3,1,1,1,2,3,1,1,1,2,3,1,1,1,1,1,	1
,2.010-12, 0.00, 505.00, 0.00,	1
ratb_t1(144, OH ', C5H8 ', 1502 ', ' ', '	1
',2.70e-11, 0.00, -390.00, 0.00, 0.00, 0.00, 0.00, ti+st,0,0,107), &	ı
ratb_t1(144,'OH ','C5H8 ','H0IP02 ','H2O ',' ', &	t
',2.54e-11, 0.00, -410.00, 0.00, 0.00, 0.00, 0.00, r,0,0,107), &	t
! B144 - Different rates and prods in CRI	
ratb t1(144,'OH ','C5H8 ','RU1402 ','	ı
'.2.54e-11. 0.00410.00. 0.00. 0.00. 0.00. 0.00. cs. 0.107). &	
! B145 JPL2011	
rath t1(145,'0H '.'CH4 '.'H20 '.'Me00 '.' '. &	,
$^{\prime}$	
rath t1(145 10H 1	1
	1
,1.05e-12, 0.00, 1090.00, 0.00, 0.00,0.00,0.00,11+S+1+CS,0,0,10/),&	ł

"a" used to include/exclude for aerosol chemistry

	ratb_t1(317, 'APINENE	', 'OH	','RTN2802 ',' ','	۰,	&
48	;' ',1.20e-11,	0.00,	-444.00, 0.00, 0.00, 0.00, 0.00,cs,0,a,107),		&
	<pre>ratb_t1(317, 'APINENE</pre>	','OH	','RTN2802 ','Sec_Org ','	۰,	&
	',1.20e-11,	0.00,	-444.00, 1.00, 0.13, 0.00, 0.00,cs,a,0,107),		&

Emissions

Table 3. Mapping of raw CMIP6 NMVOC emissions to CRI-Strat and StratTrop mechanisms, with total emitted carbon mass for 2014 from Anthropogenic, biomass burning and biogenic sources.

Raw emission classes	$ \begin{array}{ c c } {\rm Anthropogenic} \\ {\rm TgC} \ {\rm yr}^{-1} \end{array} $	$\begin{array}{c} {\rm Biomass} \ {\rm Burning} \\ {\rm TgC} \ {\rm yr}^{-1} \end{array}$	Biogenic TgC yr ⁻¹	CRIv2-R5 Species	StratTrop Species
VOC1: Alcohols	0.4 3.	$3.5 \\ 0.1$	48.5 9.5	MeOH EtOH	MeOH to MeOH
VOC2: Ethane VOC7: Ethene VOC9: Ethyne	$5.3 \\ 4.9 \\ 3.1$	$2.8 \\ 4.1 \\ 1.1$	$\begin{array}{c} 1.0\\ 25.8\\ -\end{array}$	C2H6 C2H4 C2H2	C2H6 to C2H6 to C2H6
VOC3: Propane VOC8: Propene	$5.5 \\ 3.0$	$0.6 \\ 3.5$	1.0 14.	C3H8 C3H6	C3H8 to C3H8
VOC4-6: Butanes and higher alkanes	4.8	0.4	0.1	C4H10	N/A
VOC10: Isoprene	–	0.6	588	C5H8	C5H8
VOC11: Monoterpenes	_	1.2	94.7	67% to APINENE* 33% to BPINENE*	$Monoterp^{\dagger}$
VOC12: Other Alkenes and Alkyenes	6.5	0.8	2.6	TBUT2ENE	N/A
VOC13: Benzene VOC14: Toluene VOC15-17: Xylenes and higher aromatics	6.1 7.0 3.1	$2.0 \\ 3.9 \\ 1.1$	$\overset{-}{86.5}$	BENZENE TOLUENE oXYLENE	N/A N/A N/A
VOC21: Formaldehyde VOC22: Other Aldehydes	$ \begin{array}{c} 1.0 \\ 0.5 \\ 0.6 \end{array} $	$2.1 \\ 3.4 \\ 0.8$	$1.8 \\ 10.0 \\ 2.0$	HCHO MeCHO EtCHO	HCHO MeCHO to MeCHO
VOC23: Ketones	1.5 1.0	1.1 0.9	$22.9 \\ 0.5$	Me2CO MEK	Me2CO to Me2CO
VOC24: Acids	4.4	$\begin{array}{c} 0.5 \\ 7.1 \end{array}$	$1.4 \\ 1.9$	HCOOH MeCO2H	N/A^{\ddagger}
Total CRI: Total StratTrop:	70.5 27.9	40.6 23.9	900.6 710.6		

C2H6 SUM = 16.7599 TG/yr

Monoterpene Emissions

Monoterpene Chemistry	ratb_t1(317, ' <u>APINENE</u> ', 'OH ', 1.20e-11, 0.00, - ratb_t1(317, ' <u>APINENE</u> ', 'OH ', 1.20e-11, 0.00, - : <u>D310</u> ratb_t1(318, ' <u>APINENE</u> ', 'NO3 ', 1.19e-12, 0.00, - ratb_t1(318, ' <u>APINENE</u> ', 'NO3
 In StratTrop – very simple conversion of Monoterp to Sec_Org with 13% yield (usually doubled to 26%) 	ratb_t1(319, 'APINENE ','03 '.8.08e-16. 0.00. ratb_t1(319, 'APINENE ','03 'Sec_Org ',8.08e-16, 0.00, : B320 ratb_t1(320, 'APINENE ','03
<pre>! B211 ratb_t1(211, 'Monoterp ','OH ','Sec_Org ',' ',' ', & ', 1.20e-11, 0.00, -444.0, 0.13, 0.0, 0.0, 0.0, ti+st+ol+r,a,0,107),& ! B212 ratb_t1(212, 'Monoterp ','03 ','Sec_Org ',' ',' ', & ', 1.01e-15, 0.00, 732.00, 0.13, 0.0, 0.0, 0.0, ti+st+ol,a,0,107), & ! B213</pre>	<pre>' '.7.57e-17. 0.00. ratb_t1(320, 'APINENE ','03 ' ',7.57e-17, 0.00, ' B321 ratb_t1(321, 'APINENE ','03 ' '.1.26e-16, 0.00, ratb_t1(321, 'APINENE ','03 ' '.1.26e-16, 0.00, ' B322</pre>
ratb_t1(213,'Monoterp ','N03 ','Sec_Org ',' ',' ',' ', & ' ',1.19e-12, 0.00, -925.00, 0.13, 0.0, 0.0, 0.0, ti+st+ol,a,0,107), &	ratb_t1(322,'BPINENE ','OH ',2.38e-11, 0.00, - ratb_t1(322,'BPINENE ','OH ',2.38e-11, 0.00, -
 CRIv2-R5 has multigenerational alpha-pinene and beta- pinene chemistry, but no SOA production 	<pre>! B323 ratb_t1(323,'BPINENE ','N03 ' '.2.51e-12. 0.00. ratb_t1(323,'BPINENE ','N03 ' ',2.51e-12, 0.00, </pre>
 Added aerosol option with same yield of sec_org production 	ratb_t1(324, 'BPINENE ','03 ' ',5.25e-18, 0.00, ratb_t1(324, 'BPINENE ','03 ' ',5.25e-18, 0.00, B325 ratb_t1(325, 'BPINENE ','03

James Weber working on further developments that will • lead to more realistic description of SOA...

UNIVERSITY OF

CAMBRIDGE

RO2-permutation Chemistry

• In low-NOx high-VOC environments, peroxy radicals preferentially react with themselves (self-reactions) and other RO2 species (cross-reactions).

 $\begin{array}{ll} \mbox{CH}_3\mbox{OO} + \mbox{CH}_3\mbox{OO} \rightarrow \mbox{2HO}_2 + \mbox{2HCHO}; & \mbox{BR}_1 \times k \\ \rightarrow \mbox{CH}_3\mbox{OH} + \mbox{HCHO}; & \mbox{BR}_2 \times k \end{array}$

 Can be efficiently replaced with "RO2permutation" reactions, reacting with an "RO2-pool" (Jenkin et al., 1997):

$$RO2(i,j,k,t) = \sum_{i}^{N_{RO2}} RO2_i(i,j,k,t)$$

 $\begin{array}{ll} CH_{3}OO + RO_{2} \rightarrow HO_{2} + HCHO; & 2 \times BR_{1} \times k \\ \rightarrow \frac{1}{2}CH_{3}OH + \frac{1}{2}HCHO; & 2 \times BR_{2} \times k \end{array}$

• Much more comprehensive representation of RO2 chemistry with little additional cost.

N.b. RO2-permutation chemistry and removal of RO2 transport also added to StratTrop, version 11.3. See ticket <u>#3959</u>. Speeds up model run by ~2-3%!

But how much does it all cost?...

Average Wallclock times per month at N96e (1.875°×1.25° L85) after 200 months of integration on MONSooN2 with 432 cores

Chemistry	Mean wall-clock time per month ± SE	Speed-up
StratTrop	4194 ± 6s ~ 1h 10m	+80%
CRI-Strat	7540 ± 7s ~ 2h 5m	-44%

 Nearly twice as expensive... but with >> double the chemical complexity.
 Not cheap, but long integration (decades-centuries) simulations are definitely feasible!

Experiments

- Comparing StratTrop and CRIv2-R5+Stratosphere (CRI-Strat) simulations, both with GLOMAP aerosol at UM vn10.9.
- N96 (1.875° x 1.25°) 85 vertical levels.
- Nudged meteorology, 2009-2019.
- 2014 CEDS emissions, as used for CMIP6.
- All NMVOC emission classes mapped in CRI-Strat vs StratTrop
 - Use additional runs to differentiate impact of chemistry vs NMVOC emissions

Scenario	Mechanism	NMVOC Emissions (Tg C yr ⁻¹)
CRI-Strat	CRI-Strat	1012 - CRI speciation
StratTrop	StratTrop	762 - ST speciation
CRI_Emiss_ST	CRI-Strat	762 - ST speciation
CRI_Emiss_C2C3	CRI-Strat	762 - CRI speciation

TOAR rural comparison

- Year-round increase in surface ozone in most regions
 - Reduces winter low bias but increases summer high bias

Tropospheric ozone column vs OMI-MLS

Ox production and loss

Ormal tropospheric ozone burden between CRI-Strart and ST O_3 burden (Tg) 331.9 336.8 308.0 306.8 O_x lifetime (days) O_x lifetime (days) 17.3 19.8 17.5 17.4 NMVOC emissions (Tg C year ⁻¹) 1012 762 762 762^{\dagger} OPE (mole _{O3} mole _{NOx}) 31.4 27.2 28.7 28.9	Emiss
CRI-Strart and ST O_x lifetime (days) 17.3 19.8 17.5 17.4 • But much more OPE (mole _{O3} mole _{NOx}) OPE (mole _{O3} mole _{NOx}) 31.4 27.2 28.7 28.9	
• But much more $\frac{\text{NMVOC emissions (Tg C year^{-1})}}{\text{OPE (mole_{O_3} mole_{NOx}^{-1})}} = \frac{1012}{31.4} = \frac{762}{27.2} = \frac{762^{\dagger}}{28.7} = \frac{28.9}{28.9}$	
• But much more $OPE (mole_{O_3} mole_{NOx}^{-1})$ 31.4 27.2 28.7 28.9	
• DULINUCIINOIE	
production and loss in ⁰ x production 1001 0024 0027 0037 0037	
$(Tg O_3 year^{-1}) HO_2 + NO + 4152 (62.7\%) 3853 (67.3\%) 3886 (64.2\%) 4001 (65.7\%)$))
CH ₃ O ₂ + NO $1540(23.3\%)$ 1285 (22.5%) 1452 (24.0%) 1419 (23.3%)))
$R'O_2 + NO$ 882 (13.3%) 545 (9.5%) 676 (11.2%) 629 (10.3%))
• How much of this extra Other 64.5 (0.7%) 41.3 (0.7%) 41.5 (0.7%) 43.2 (0.7%)	1
production is due to O_x chemical Loss Total 5853 5128 5355 5380	
additional NMVOC $(Tg O_3 year^{-1})$ $O(^1D) + H_2O$ $3196 (45.5\%)$ $2660 (42.9\%)$ $3022 (47.1\%)$ $3005 (46.6\%)$))
emissions in CRI-Strat? HO ₂ +O ₃ 1713 (24.4%) 1596 (25.7%) 1498 (23.4%) 1513 (23.5%)))
$OH + O_3 \qquad 708 (10.1\%) 714 (11.5\%) 667 (10.4\%) \qquad 680 (10.6\%)$)
$O_3 + Alkene$ 160 (2.3%) 96.5 (1.6%) 115 (1.79%) 129 (2%)	
Other 76.3 (1.1%) 61.5 (1.0%) 53.1 (0.8%) 52.6 (0.8%)	1

$[Ox] = [O_3] + [O] + [NO_2] + 2[NO_3] + 3[N_2O_5] + [HNO_3] + [HNO_4] + PANs$

Ozone isopleths

Difference in Ox Production and Loss

- CRI-Strat produces much more ozone downwind of emissions
- But loss is of Ox also much higher
 - Primarily due to $O(1)D+H_2O small$ difference in rate coefficients have large impact on ozone chemistry

Carbon Monoxide

Month

Month

CRI-Strat - Strat-Trop								
(C) and the contraction of the c	Flux			CRI-	-Strat	$\operatorname{StratTrop}$	CRI_Emiss_ST	CRI_Emiss_C2C3
The second second	CO burden (Tg)			35	54.9	300.2	317.2	315.2
· Carle Carles	CO lifetime (days	3)		3	9.1	38.6	38.1	37.2
DJF	CO production	Total		34	402	2915	3121	3171
	$(Tg CO year^{-1})$	Emissions		1111 ((32.7%)	1111 (38.1%)	1111 (35.6%)	1111 (35%)
le internet		HCHO + OH $HCHO + h\nu$		1293	(38%)	1076(36.9%)	1163(37.3%)	1177(37.1%)
the trace of		Other Chem		125 ((3.7%)	71.5 (2.5%)	101 (3.25%)	107 (3.4%)
(f)		Other Phot		293 ((8.6%)	164 (5.6%)	194~(6.23%)	211 (6.7%)
the same same	CO Loss	Total		33	311	2841	3041	3090
· Stan Constant	$(Tg CO year^{-1})$	CO + OH		3157 ((95.4%)	2704 (95.2%)	2900 (95.4%)	2948 (95.4%)
JJA A A A A A A A A A A A A A A A A A A		CO Dry Dep		100 ((4.070)	137 (4.870)	141 (4.770)	142 (4.070)
for the figure	Jan Mar May Mauna Loa (19.5N	Jul Sep Nov , 155.6W, 3397m)	Jan Mar May Jul S Crozet Island (46.5S, 51.8	Sep Nov 3E, 120m)	Jan	Mar May Jul Sep Syowa Station (69.0S, 39.6E, 11	Nov Jan Mar Im) South Po	May Jul Sep Nov ble (90.0S, 24.8W, 2810m)
		8		8	8	0000	8 -	0000
the case		bv) 60			60			
		dd) 05			9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		00 qq 05 -	
	r = 0.702 MBE = -10	.2%	- r = 0.633 MBE = 20.7%		, 20 J	= 0.774 MBE = 17.3%	ດີ r = 0.861 M	IBE = 18.7%
	$\circ - \underbrace{r = 0.783 \text{ MBE} = -18}_{\text{Here}}$		r = 0.703 MBE = 2.37%			= 0.822 MBE = -0.44%		
Greater CO In CRI-Strat due to	Jan Mar May (Jui Sep Nov	Jan Mar May Jul S	ep Nov	Jan	Mar May Jul Sep	Nov Jan Mar	May Jul Sep Nov
secondary production, particularly								
from more explicit isoprene and								
	• 	₹'' \} ‡+						
monoterpene cnemistry.	r = 0.688 MBE = 16.2 r = 0.769 MBE = -18	% 6%						

Easter Island (27.1S, 109.4W, 50m)

Cape Grim (40.7S, 144.7E, 94m)

NOx, NOy and NOz

- Much less NOx in CRI-Strat
- More nitrogen stored in NOz reservoir species
- Additional NMVOCs provide more capacity to form RONO2

NOx = NO + NO2 NOz = NO3 + 2*N2O5 + HONO2 + HO2NO2 + PAN + RONO2 + ...

NOy = NOx + NOz

- CRI-Strat with ST emissions has much less NOx **and** NOz in the troposphere
- Due to small differences in HOx/NOx reaction rate coefficients:
- Faster production of HONO2 in boundary layer – faster loss via dry deposition

Differences in termolecular reaction rates HONO2 production Ratio CRI-Strat/StratTrop

Summary

 Comprehensive CRI-Strat mechanism, with detailed NMVOC chemistry built from CRIv2.1-R5, implemented in UKCA.

Pros:

- Much more detailed representation of VOCs, full use of emission inventory data
- **Traceability** of Ozone forming potential to Master Chemical Mechanism
- Improved aromatic and BVOC oxidation chemistry
 - Can be used to improve links between chemistry scheme and SOA formation
 - Likely to have greater benefits at high resolution

Cons:

- Slower and more complex to run/analyse, runs ~1.8x slower. However, this is still efficient enough for long-term (10yr+) and high-res runs to be possible.
- Does not necessarily "improve" O3, CO and other metrics against observations (highlights structural errors in the model).

CRI-Strat 2: New isoprene chemistry and some inorganic rate changes

Mechanism Comparison: CRI-Strat vs. CRI-Strat 2

CS2 run time increases by ~6% relative to CS (cf. ~80% increase from ST to CS) 1 month free-running UKESM AMIP \approx 1 hr 50 min

	CRI-STRAT (CS)	CRI-STRAT 2 (CS2)
Tropospheric Chemistry Scheme	CRI v2.1 (Jenkin et al., 2008, Watson et al., 2008, Utembe et al., 2010)	CRI v2.2 (Jenkin et al., 2019)
Stratospheric Chemistry Scheme	Stratospheric chemistry (Morgenstern et al., 2009)	Stratospheric chemistry (Morgenstern et al., 2009)
No. of Species	219	228 (+9)
No. of Bimolecular Reactions	536	582 (+46)
No. of Termolecular Reactions	36	44 (+8)
No. of Photolysis Reactions	128	140 (+12)

New species include IEPOX and HMML (SOA precursors) and HPALD (HPUCARB12).

Low Altitude OH: CRI-Strat vs. CRI-Strat 2

(c) OH : CS2 - CS

40

50

https://code.metoffice.gov.uk/doc/um/latest/papers/umdp_084.pdf

Select i_ukca_chem = 59 (CRI-Strat chemistry)

Then set i_ukca_chem_version >= 119

Same emissions as CRI-Strat

Summary

Updated CRIv2.2 has been added by James Weber. Offers several advantages:

- Updates to reaction rate coefficients traceable to MCMv3.3.1
- Improved isoprene chemistry to reflect latest understanding of HOx recycling and IEPOX formation
- Useful for understanding oxidising capacity and SOA formation being used for investigating changes to aerosol forcing

CRI-Strat (CRIv2.1-R5) is useable in version UM from version 11.7, first committed in <u>ticket #4231</u>, bug fix <u>#5523</u>.

See Archer-Nicholls et al., JAMES, 2021 doi:10.1002/essoar.10505092.1)

CRI-Strat2 paper: Weber et al., Geosci. Model Dev., 2021, Doi:10.5194/gmd-14-5239-2021

CRI vs StratTrop chemistry - details

Scenario	Mechanism	NMVOC Emissions (Tg C yr ⁻¹)
CRI-Strat	CRI-Strat	1012 Tg C yr ⁻¹ - CRI speciation
StratTrop	StratTrop	762 Tg C yr ⁻¹ - ST speciation
CRI-S_STEmiss	CRI-Strat	762 Tg C yr ⁻¹ - ST speciation
CRI-S_C2C3ExpEmiss	CRI-Strat	762 Tg C yr ⁻¹ - CRI speciation

CRI vs StratTrop chemistry - details

	StratTrop + GLOMAP Aero	CRIv2-R5	CRI-Strat	CRI-Strat + GLOMAP Aero
No. Species	87	198	219	233
No. Tracers	83	146	167	181
Non transported prognostics	4	52	52	52
No. RO2 species	9 (transported)	47 (non- transported)	47	47
No. Emissions	23	27	27	38
No. photol reactions	60	100	124	126
No. Thermal reactions (bimol+termol+het)	245	446	577	598
No. wetdep species	34	74	80	83
No. drydep species	41	124	128	131

But how much does it all cost?...

Average Wallclock times per month at N96e (1.875°×1.25° L85) after 200 months on 432 cores

Chemistry	Mean wall-clock time per month ± SE	Speed-up	
StratTrop	4194 ± 6s ~ 1h 10m	+80%	
CRI-Strat	7540 ± 7s ~ 2h 5m	-44%	

• 1.8 x as expensive, ... but with >> double the chemical complexity.

Not cheap, but long integration (decades-centuries) simulations are definitely feasible!

Boundary Layer NOy

In polluted environments, HNO3 formed faster in CRI-Strat => Greater loss in hot spots

In CRI runs with same amount of NMVOCs, leads to net loss of NOy

In CRI-Strat: extra NMVOCs mean more NOx stored in long-lived reservoirs => increased NOz

HCHO Tropospheric Column

O(1D) reaction rate comparisons

- Overall, O(1D) ~20-25% more likely to react with H2O in CRI
- More HOx production and Ox loss
- Difference due to different sources for reaction rate coefficients (IUPAC vs JPL)

OH and HO2

Tropospheric HOx budget

	CRI-Strat	StratTrop	CRI_Emiss_ST	CRI_Emiss_C2C3
$[OH] (10^6 \text{ molecules } \text{cm}^{-3})$	1.335	1.339	1.348	1.375
OH NH:SH ratio	1.38	1.35	1.4	1.4
$[HO_2]$ (pptv)	6.27	5.90	6.02	6.06
$OH: HO_2 ratio (\%)$	1.49	1.67	1.61	1.63
CH_4 lifetime W.R.T. OH (years)	7.77	8.13	7.71	7.60
$HO_2 + HO_2$ flux (P mole year ⁻¹)	60.5	32.2	38.8	39.9

NOy budget

	CRI-Strat	StratTrop	CRI_Emiss_ST	CRI_Emiss_C2C3
NO _y Burden (Tg N) NO _x Burden (Tg N) NO Burden (Tg N)	$ \begin{array}{c c} 1.112 \\ 0.115 (10.3\%) \\ 0.998 (89.7\%) \end{array} $	1.018 0.152 (14.9%) 0.866 (85.1%)	0.950 0.136 (14.3%) 0.814 (85.7%)	0.910 0.131 (14.4%) 0.779 (85.6%)
$\frac{100_{\rm Z} \text{ Durden (1g W)}}{$	0.556 (05.170)	0.512 (50.4%)	0.514 (53.170)	0.512 (56.2%)
Other inorganic NO_{π} (Tg N)	0.009(45.8%) 0.021(1.9%)	$\frac{0.513}{0.018} (\frac{50.4\%}{1.7\%})$	0.008(33.2%)	0.012(50.2%) 0.019(2.1%)
PANs (Tg N)	0.367 (33.0%)	0.296~(29.1%)	0.245~(25.8%)	0.206~(22.7%)
$RONO_2$ (Tg N)	0.061 (5.5%)	0.039~(3.9%)	0.038(4.0%)	0.035(3.9%)
$CH_3O_2NO_2 (Tg N)$	0.008 (0.7%)	N/A	0.007 (0.7%)	0.007 (0.7%)
Nitrophenols (Tg N)	0.031 (2.8%)	N/A	0.0	0.0
Total NO_x Emissions (Tg N year ⁻¹)	61.5	61.5	61.5	61.5
Total NO _y Deposition (Tg N year ⁻¹)	63.0	62.9	63.0	63.0
Inferred STT (Tg N year ⁻¹)	1.46	1.40	1.43	1.44
NO_x Dry deposition (Tg N year ⁻¹)	6.83~(10.8%)	7.70~(12.2%)	7.36~(11.7%)	7.25~(11.5%)
HONO ₂ Wet deposition (Tg N year ^{-1})	29.0~(46.0%)	30.1~(47.8%)	30.1~(47.8%)	30.0~(47.7%)
HONO ₂ Dry deposition (Tg N year ⁻¹)	22.0~(34.9%)	21.6~(34.3%)	22.3 (35.5%)	22.4~(35.6%)
Other inorganic NO_z deposition (Tg N year ⁻¹)	1.21 (1.9%)	0.97~(1.6%)	1.04~(1.6%)	1.08~(1.7%)
PANs dry deposition (Tg N year ^{-1})	1.70(2.7%)	1.28~(2.0%)	0.894~(1.4%)	0.918~(1.5%)
$RONO_2$ deposition (Tg N year ⁻¹)	2.09(3.3%)	1.30~(2.1%)	1.22~(2.0%)	1.28~(2.0%)
Nitrophenol deposition (Tg N year ^{-1})	0.22~(0.4%)	N/A	0.0	0.0
NO _y deposition lifetime (days)	6.44	5.91	5.51	5.28
$HONO_2$ deposition lifetime (days)	3.65	3.62	3.53	3.57
PANs deposition lifetime (days)	78.9	84.5	100.1	82.0
$RONO_2$ deposition lifetime (days)	10.7	11.0	11.4	9.99

Loss of Ox due to O1D+H2O; CRI-Strat - StratTrop

CRIv2.2 has updated rate much closer to StratTrop

Ratio Flux (O¹D+H2O)/(O¹D+M)

