

CRI-Strat: a new chemistry mechanism for UKESM

Scott Archer-Nicholls

Luke Abraham, Matthew Shin, James Weber, Maria Russo, Douglas Lowe, Steven Utembe, Brian Kerridge, Barry Latter, Richard Siddans, Michael Jenkin, Fiona O'Connor, Oliver Wild, Alex Archibald

Email: sa847 at cam.ac.uk

"Traditional" Chemical mechanism development (e.g. for StratTrop)

Issues

- How can we be sure the most "important" reactions are captured?
- Impossible to separate biases due to mechanism from other model errors.
- Risk of compounding errors as mechanism is expanded different levels of complexity or sources of kinetic data for different aspects of chemistry.
- No traceability to explicit mechanisms.

The Common Representative Intermediates Approach

CRI Implementation in UKCA

Common Representative Intermediates (CRIv2.1-R5), extended with Stratospheric & aerosol chemistry to make CRI-Strat+GLOMAP.

Traceable to the Master Chemical Mechanism (MCMv3.2).

More than 2x as complicated, runs 80% slower – UKESM benchmark simulations doable

Ready to use from UM version 11.8

Additional chemistry to StratTrop:

- Alkanes & alkenes up to C4
- Aromatics (benzene, toluene & oxylene).
- Detailed BVOC chemistry.
- Organic nitrates (RO2+NO → RONO2) for all relevant species.
- Self- and cross- reactions parameterized for all 47 RO2 species.
- All available VOC emissions used.

Carbon Monoxide & methane lifetime

Greater CO in CRI-Strat due to secondary production, particularly from more explicit isoprene and monoterpene chemistry.

Important for oxidant budget

	CRI-Strat	StratTrop
$[OH] (10^6 \text{ molecules } \text{cm}^{-3})$	1.363	1.339
OH NH:SH ratio	1.38	1.35
$[HO_2]$ (pptv)	6.26	5.90
$OH: HO_2 ratio (\%)$	1.56	1.67
CH ₄ lifetime W.R.T. OH (years)	7.65	8.13
$HO_2 + HO_2$ flux (P mole year ⁻¹)	41.9	32.2

StratTrop – OMI, from Archibald et al., (2020)

Tropospheric Column NO2

NOy burden

In CRI-Strat: extra NMVOCs & RONO2 mean more NOx stored in long-lived reservoirs => less NOx, more NOz

If CRI-Strat use identical emissions to StratTrop, HNO3 formed faster => Greater deposition in polluted regions leads to net loss of NOy

> Nox burden depends on chemistry **and** VOC emissions, not just NOx emissions

Summary and Conclusions

- Comprehensive CRI-Strat mechanism, with detailed NMVOC chemistry built from CRIv2.1-R5, implemented in UKCA.
- Paradigm shift in mechanism development ozone production traceable to MCMv3.2.
- Improved aromatic and BVOC oxidation chemistry
 - Can be used to improve links between chemistry, oxidants and aerosol formation
- Much more detailed representation of NMVOCs, full use of emission inventory data
 - We know these NMVOC emissions are important for O3, NOx, CO & HOx => therefore climate
- Slower and more complex to run/analyse, runs ~1.8x slower. However, long-term and high-res runs possible
 - Benchmarking => use for one or two key simulations. Are radiative forcing and climate sensitivity dependent on chemical mechanism?
- Being at the forefront the field most comprehensive chemistry of all CMIP models opens up science questions:
 - Global air quality and future change, biosphere/atmosphere interactions, SOA formation

CRI-Strat (v2.1) is useable in version UM from version 11.7, first committed in <u>ticket #4231</u>, bug fix <u>#5523</u>. See Archer-Nicholls et al., JAMES, 2021 for details (*in review*, preprint: <u>doi:10.1002/essoar.10505092.1</u>)

Please get in contact: sa847 at cam.ac.uk

Common Representative Intermediates

Master Chemical Mechanism (MCM) chemistry highlights the complex oxidation of one C_6 alkane.

The CRI approach is one which conserves the O_3 forming potential of VOCs. Lumping the intermediate reactive products (RO₂ and their daughters).

Each version of CRI fully **traceable** to a version of the MCM

Further reductions: primary VOCs are lumped only if ozone production is conserved, as tested by rigorous evaluation against MCM.

Experiments

- Comparing StratTrop and CRIv2-R5+Stratosphere (CRI-Strat) simulations, both with GLOMAP aerosol at UM vn10.9.
- N96 (1.875° x 1.25°) 85 vertical levels.
- Nudged meteorology, 2009-2019.
- 2014 CEDS emissions, as used for CMIP6.
- All NMVOC emission classes mapped in CRI-Strat vs StratTrop:
 - 70.5 vs 27.9 GgC/yr anthropogenic.
 - 40.6 vs 23.9 GgC/yr biomass burning.
 - 900.6 vs 710.6 GgC/yr biogenic.

Scenario	Mechanism	NMVOC Emissions (Tg C yr ⁻¹)
CRI-Strat	CRI-Strat	1012 - CRI speciation
StratTrop	StratTrop	762 - ST speciation
CRI_Emiss_ST	CRI-Strat	762 - ST speciation
CRI_Emiss_C2C3	CRI-Strat	762 - CRI speciation

Use additional runs to differentiate impact of chemistry vs NMVOC emissions

TOAR rural comparison

- Year-round increase in surface ozone in most regions
- Reduces winter low bias but increases summer high bias
- Production *and* loss of ozone increase in CRI-Strat

Tropospheric ozone column vs OMI-MLS

CAMBRIDGE