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Introduction

The UKCA code on the UM trunk was updated at vn8.2 using a code merged from various
vn7.3 branches. However, the vn7.3 merged code is still the basis for research using UKCA. This
1s because of various problems affecting both the chemistry and aerosol components of UKCA
when using the GA4.0 climate configuration which is described by (Walters et al., 2013).

Here we discuss the development and evaluation of a development version of the model
using the Troplsop chemistry, including tropospheric aerosol chemistry and GLOMAP-mode with
ACTIVATE. Developments to UKCA affecting vn8.4 include: 1) the implementation of CDNC
estimates from UKCA into the radiation and precipitation schemes of the UM; 2) a revision to the
lightning NOx scheme; and 3) transfer of the aerosol direct emissions to UKCA EMISSION CTL
so that emissions are added before GLOMAP-mode is called.

Developments to the Code

The main problem affecting the aerosols in the model at GA4.0 was that the nucleation
scavenging routine for aerosols was affected by the adoption of a prognostic rain scheme. This was
done at GA3.0 to overcome the problem of overestimation of dynamic rain over ocean areas. At
GA4.0, compared to the vn7.3 models, there is less dynamic rain over the open ocean areas with a
corresponding increase to the convective component (Figs. 1-4).

The aerosol rainout routine was thus changed from using vertical precipitation differences to
using autoconversion and accretion rates. In order to mimic the previous behaviour using vertical
differences in dynamic rainfall, the snow and ice melting terms are also included. After this change,
the model aerosol mass and optical depth was found to be too large, and this was attributed to the
known (Kipling et al., 2013) problem of convective washout in UKCA where time splitting allows
the vertical movement of aerosols without any removal to a height where removal processes are
slow. The implementation of a plume scavenging scheme similar to that of Kipling et al (2013) has
improved the aerosol distributions. It is clear that this code needs extending to the soluble chemical
species.

Several other changes to the code have been made:

1. Application of an improved filter to avoid unrealistic aerosol concentrations after
advection.



2. Adoption of a better aerosol tracer selection process so that fewer tracers are
required.

3. Change to the minimum tracer concentration allowed in the chemical solver in
response to solver crashes.

4. At vn8.4 the default nucleation scheme is Vekhamaki, but this was turned back to
Kulmala in order to compare with previous runs.

First runs of the code at vn8.2 showed considerable increases to tropical ozone and OH
compared to previous runs at vn8.2 and this has been attributed to the increased (but more realistic)
lightning NOx emissions. These were diagnosed at 7.9 Tg [N] /yr compared to a total of 0.77 Tg/yr
at vn8.2. The last run has the lightning NOx emissions divided by two as a sensitivity test.
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lllustration 1: vn8.4 dynamic rainfall rate
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Hllustration 2: vn7.3 dynamic rainfall rate
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Hllustration 3: vn8.4 convective rainfall rate
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lllustration 4: vn7.3 convective rainfall rate

Known Defects

The Troplsop chemical scheme has not had its rate coefficients updated as has the Strattrop
scheme.

Evaluation

Evaluation of this model is at an early stage, however, the UKCA evaluation suite has been
used for the aerosols. This shows little difference between the two runs with differing lightning
NOx emissions. The figures below are from the evaluation.
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Hllustration 5: UKCA Condensation nuclei against observations in tropics,
northern hemisphere and southern hemisphere

Hlustration 6: Model number concentrations
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Hllustration 7: Surface SO4, BC, and OC concentrations in microgram per cubic
metre
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Hllustration 8: Surface SO4 concentrations compared to observations
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Hllustration 9: Surface elemental carbon compared to observations
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lllustration 10: Cloud droplet number concentration for
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Hllustration 11: Aerosol optical depth at 550 nm for amtjn



Burdens and lifetimes

A complete budget analysis has been done for the model runs completed, the table below
shows a summary of the burdens and lifetimes for UKCA at vn8.2 (with and without plume
scavenging) and vn8.4, together with the results from the AEROCOM model intercomparison

project.

vn8.2, no PS |vn8.2 with PS |vn8.4 with PS | AEROCOM
Sulphate 1.02 0.79 0.69 0.66
Sea-salt 16.7 12.9 12.8 6.4
BC 0.13 0.07 0.07 0.21
oC 0.88 0.49 0.38 1.21

Table 1: Atmospheric burdens for sulphate, sea-salt, black carbon and organic carbon (Tg). The
vn8.2 results are for simulations with and without plume scavenging (PS).

vn8&.2, no PS vn8&.2 with PS vn&.4 with PS AEROCOM
Sulphate 7.4 5.8 4.7 4.1 (3.0-5.5)
Sea-salt 1.45 1.1 1.1 0.4 (0.2-1.0)
BC 6.9 3.7 3.4 6.5 (5.2-15)
oC 12.3 7.1 53 6.2 (4.2-11)

Table 2: Lifetimes (days) for aerosol in UKCA compared with the AEROCOM median value. The
range of model results in the AEROCOM project is shown.
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