

Yusuf Hamied Department of Chemistry

How to do everything with UKCA

Luke Abraham NCAS Cambridge

n.luke.abraham@ncas.ac.uk

- What is the Unified Model, and how is code developed for it?
- What do I mean by "virtually"?
- What do I mean by "virtually everything"?
- What do I mean by "everything"?

What is the Met Office Unified Model?

Atmospheric Modelling: integrating our knowledge of atmospheric behaviour forward in time

• The challenge: To reproduce the behaviour of (hazardous) weather systems

Unified Model

Brown et al. (2013)

Operational forecasts

I Mesoscale (resolution approx. 4km, 1.5km)

Global scale (resolution approx. 17km)

- Global and regional climate predictions
 - □ Resolution around 120km
 - □ Run for 10-100-... years

- Seasonal predictions
 - □ Resolution approx. 60km

Research mode

□ Resolution 1km - 10m

© Crown copyright Met Office

> 25 years old

The consequence of unification

300 km

...the same scheme has to continue to work

2.5

2.0

A factor of 1000

between these

Total sig. wave height (m) 10-Sep-2012 21:30 (T+00.5) (valid: 10-Sep-2012 212)

50.55°

50.5°

50.45°N

00

0.5

1.0

1.5

300 m

Exoplanets

The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters Mayne *et al.* 2014

Met Office

Exploring the climate of Proxima B with the Met Office Unified Model Boutle *et al.* 2017

Ç

Development of Climate Models

Increasing the number and complexity of processes represented in climate models.

Met Office

United Kingdom Chemistry and Aerosols

- In Cambridge we work on a part of the UM called the United Kingdom Chemistry and Aerosols sub-model, or UKCA.
- We develop new chemistry schemes for the model, with a focus on Chemistry-Climate Interactions.
 - Here we usually include between 75-240 transported chemical species and hundreds of reactions to allow the model to accurately simulate changes to radiatively important gases such as ozone and methane, which can feed-back on the climate system.

Developing code for the Unified Model

The Met Office Unified Model

M Unified Model

- Approximately 900,000 lines of code (mainly Fortran 2003).
- Over 200 active developers.
- Uses the Rose graphical namelist editor and the Cylc workflow engine, with the code held in subversion repositories, managed using FCM ("Flexible Configuration Management" mostly a wrapper around subversion).
- Majority of the development work is done by the Met Office.

Met Office Unified Model code development process

Make a ticket Checkout branch from UM trunk

Undergo review process to commit code to trunk

3 UM releases per year

Develop and implement code changes

Test code changes

Similar process for science improvements to be included in operational configurations.

UM Development Working Practices

Code development process

- Science changes often require testing with long simulations that will take several weeks or more to run.
 - Diagnostics are then run through assessment and validation tools to produce many plots of standard metrics.
- All code changes are tested using the rose-stem utility, using a set of standard tests that compare against "Known Good Output" (KGO).
 - e.g. a climate resolution UKCA testing job takes 7 minutes to run 2 model days on 144 cores, requiring 112GB of memory.
- You must be able to show that your change works when turned on and doesn't break anything when turned off.

rose-stem

- At UM vn12.2 there are 328 UM testing jobs (inc. 33 UKCA jobs):
 - HPC jobs with Cray, GCC/Intel & GNU compilers
 - Linux jobs GCC/Intel, GCC/PGI, Clang/Intel, & GNU compilers
- Additional restart file creation tests and further tests for code standards, metadata, utilities, creation of boundary conditions, etc.
- Tests include KGO, restartability, OpenMP, & processor decomposition tests, with a range of optimisation levels:
 - "high", "fast", "safe", "debug", "rigorous".
- If a KGO test "breaks" you need to explain why and get approval to change the saved output.
- Tests protect your code and scientific configurations from being broken by another change.

rose-stem - Met Office testing framework

Done with different levels of compiler optimisation.

rose-stem - "Known Good Output" or KGO tests

KGO will likely be different with different levels of compiler optimisation.

rose-stem - processor decomposition tests

Some changes may break KGO but should still pass the processor decomposition tests.

rose-stem - OpenMP tests

KGO should be identical with or without OpenMP, although the OMP test should still pass even if the KGO one does not.

Met Office

rose-stem - restart tests

Some changes may break KGO but should still pass the restartability tests.

rose stem --group=developer,ukca

vn10.7_ukca_gnu_tests - exvcylc07:7795		
<u>File View Control Suite H</u> elp		
Hold Stop Suite (Re-)connect View 1: Expand	Collapse Group	Layout View 2: 💽 Croup Ungroup Transpose Subgraphs Zoom In Zoom Out Best Fit
task	state host job system job ID T-submit 1	
▼ F 1	running	
V F EXTRACT SOURCE	running	
V METO LINUX BUILD SETTINGS	succeeded	
F METO_LINUX_BUILD	succeeded	
▶ F METO XC40 BUILD	running	
Ø 🖪 INSTALL	succeeded	
I HOUSEKEEPING	waiting	
▼ F ROSE ANA COMPARISON	running	
FI METO LINUX ROSE ANA	waiting	
METO XC40 ROSE ANA COMPARISON	running	
V ROSE ANA WALLCLOCK	waiting	
FI METO XC40 ROSE ANA WALLCLOCK COMPARISON	waiting	
♦ I DESKTOP	succeeded	
D METO LINUX AQUM EG	succeeded	
D F METO LINUX AQUM EG GLOMAP	running	
D METO LINUX N48 GA7 AMIP 12HR	succeeded	
▶ METO LINUX N48 GA7 AMIP NAMING	succeeded	
METO LINUX N48 GA7 AMIP 12HR COMP CHECK	running	
METO LINUX N48 GA AMIP DEV 12HR	succeeded	
METO LINUX N48 EG OMP	succeeded	
D METO LINUX N48 EG NOOMP	succeeded	
D METO LINUX SCM TOGACOARE GA6 OMP	succeeded	
▶ ■ METO LINUX SCM GABLS3 GA6 OMP	succeeded	
▷ METO XC40	succeeded	
▶ F METO XC40 INTEL HASWELL	succeeded	
D F METO XC40 GNU HASWELL	succeeded	
▶ METO XC40 UKCA EG STRATTROP	running	
D F METO XC40 UKCA NUDGED	running	
METO_XC40_N48_GA7_AMIP_2DAY	running	
D F METO XC40 N48 GA7 AMIP NAMING	running	
▷ 🔽 XC40 GA7 AMIP NAMING CRUN INSTALL	waiting	
D F XC40 GA7 AMIP NAMING CRUN ARCHIVE	waiting	
METO XC40_N48_GA7_AMIP_2DAY_COMP_CHECK	waiting	
▷ F METO XC40 N48 GA7 AMIP 10DAY	running	
METO_XC40_N48_GA7_AMIP_30DAY	submitted	
METO_XC40_N48_GA_AMIP_DEV_2DAY	running	
▷ F METO XC40 N48 EG OMP	running	
METO_XC40_N48_EG_OMP_IFORT	succeeded	
running to stop at 1 (filtered:) live		2017-03-17T13:35:13Z

Met Office Infrastructure (2021)

Outside the Met Office

But what if you don't have access to the Met Office infrastructure?

What can UK university students and researchers access?

- You should be able to get access to the UM source code and the tools to run the UM.
- You may be able to get access to HPC resources, e.g. ARCHER2 or Monsoon2 etc.
- You may be able to get access to an analysis platform, e.g. JASMIN.
- Access to rose-stem and the internal Met Office tools could be limited or not available at all.

What do I mean by

"virtually"?

What do I mean by "virtually"?

- A Virtual Machine configuration has been developed to allow people to easily use FCM, Rose, & Cylc.
- Uses Vagrant and VirtualBox (for a PC or server) or AWS.
- UM Systems Team have set-up running the UM in an Ubuntu guest image.

JASMIN

Met Office Virtual Machine on GitHub:

https://github.com/metomi/metomi-vms

Uses for the VM $\,$

- 1. Developing & testing code changes
 - Faster turnaround time
 - Approximately 10 minutes to compile from scratch, with only a few seconds to recompile.
 - Small versions of standard jobs run in a few minutes on 2 cores.

2. Training

What do I mean by "virtually"?

- To run a basic UM test suite, the VM needs around 3GB of memory.
- Initial thoughts were that the main issue with running UKCA would (probably!) be the memory requirement.
 - A standard UKCA job requires an additional 137 3D fields to be added to the restart file, along with further temporary arrays allocated at run-time and any extra required for diagnostic output.
 - Usually require at least 112GB of memory at climate resolution (192x144x85 grid points).

Met Office

National Centre for Atmospheric Science NATURAL ENVIRONMENT RESEARCH COUNCIL

GA7 jobs run for 1 model hour

- 3 timesteps for L70 - 2 timesteps for L38 32

Climate resolution 192x144x85 grid points

VM-suitable resolution 96x72x38 grid points

What do I mean by "virtually everything"?

Helpful(?!) Errors

- However, there seemed to be an issue with using the GNU compiler, as the code failed with the following error on timestep 3:
- ? Error from routine: EG_BICGSTAB_MIXED_PREC
- ? Error message: NaNs in error term in BiCGstab
- ? This is a common point for the model to fail if it
- ? has ingested or developed NaNs or infinities ? elsewhere in the code.

See the following URL for more information:

? https://code.metoffice.gov.uk/trac/um/wiki/KnownUMFailurePoints

 After some debugging, the issue *appeared* to be with the UKCA routine asad_hetero.F90, which couples the chemistry and aerosol schemes.

Met Office

Precision

The UM uses compiler flags to make **REAL**S double-precision, so rather than using

```
REAL(KIND=8) :: a
```

```
or
```

```
INTEGER, PARAMETER :: dp=SELECTED_REAL_KIND(15,300)
REAL(KIND=dp) :: a
the UM will use
```

```
-r8 (Intel), -s default64 (Cray), -fdefault-real-8 (GNU)
```

AND there is still the occasional 1.0d0 statement.

But what about **TINY (1.0d0)**?

- Intel (-r8):
- tiny(1.0) = 2.225073858507201E-308
- tiny(1.0d0) = 2.225073858507201E-308
- Cray (-s default64)
- tiny(1.0) = 2.22507385850720138E-308
- tiny(1.0d0) = 2.22507385850720138E-308

But what about **TINY(1.0d0)**?

- Intel (-r8):
- tiny(1.0) = 2.225073858507201E-308
- tiny(1.0d0) = 2.225073858507201E-308
- Cray (-s default64)
- tiny(1.0) = 2.22507385850720138E-308
- tiny(1.0d0) = 2.22507385850720138E-308
- GNU (-fdefault-real-8)
- tiny(1.0) 2.2250738585072014E-308 =
- tiny(1.0d0) =3.36210314311209350626267781732175260E-4932
- Effectively a = 1.0d0 = 1.0but
 - a = tiny(1.0d0) = 0.0

But what about **TINY (1.0d0)**?

- Intel (-r8):
- tiny(1.0) = 2.225073858507201E-308
- tiny(1.0d0) = 2.225073858507201E-308
- Cray (-s default64)
- tiny(1.0) = 2.22507385850720138E-308
- tiny(1.0d0) = 2.22507385850720138E-308
- GNU (-fdefault-real-8)
- tiny(1.0) = 2.2250738585072014E 308
- tiny(1.0d0) = 3.36210314311209350626267781732175260E-4932
- GNU (-fdefault-real-8 -fdefault-double-8)
- tiny(1.0) = 2.2250738585072014E-308
- tiny(1.0d0) = 2.2250738585072014E-308

What do I mean by

"everything"?

Rose stem (again!)

- These compiler flag changes went into the UM trunk at vn10.7.
- There are *rose-stem* testing jobs for several UM configurations (now also including UKCA) on the VM.
- Equivalent low-resolution UKCA jobs have also been added to the Met Office HPC tests.
 - One is included as part of the standard *developer* group that must be used when making any change.

Training

- What if we could use the VM for training?
- This would mean:
- 1. Everyone runs on their own dedicated computer.
 - Simpler set-up than for current production runs.
- 2. Researchers doing the tutorials can easily do the training tasks without needing a supercomputer account.
 - "Try before you buy"

UKCA Training

Conclusions

Conclusions

- Testing environments, as well as production environments, are required to be able to develop code changes in a timely manner.
- A Virtual Machine environment. Revised: 10 August 2018 - Accepted: 23 August 2018 - Published: 6 September 2018 has been developed by the Met Office that easily allows users to install their own copy of the UM.
- Standard tests have also been implemented on this system that can be • used when developing new code changes.
- This creates a standard system that all non-Met Office developers can use to quickly implement and test changes, prior to running on a HPC.

Geosci. Model Dev., 11, 3647-3657, 2018 https://doi.org/10.5194/gmd-11-3647-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Using a virtual machine environment for developing, testing, and training for the UM-UKCA composition-climate model, using Unified Model version 10.9 and above

Nathan Luke Abraham^{1,2}, Alexander T. Archibald^{1,2}, Paul Cresswell³, Sam Cusworth³, Mohit Dalvi³, David Matthews³, Steven Wardle³, and Stuart Whitehouse³

¹Department of Chemistry, University of Cambridge, CB2 1EW, UK ²National Centre for Atmospheric Science, UK ³ Met Office, FitzRoy Road, Exeter, EX1 3PB, UK

Correspondence: Nathan Luke Abraham (luke.abraham@atm.ch.cam.ac.uk)

Received: 8 May 2018 - Discussion started: 18 May 2018

Step	ARCHER (XC30)	XCS-C (XC40)	Virtual Machine
Cray cce initial compile	34 minutes	15 minutes	-
Cray cce incremental compile	5-7 minutes	3 minutes	- / /-
Intel ifort initial compile	19 minutes	9 minutes	-//
Intel ifort incremental compile	6-7 minutes	1 minute	- // /
GNU gfortran initial compile		4 minutes	8-10 minutes
GNU gfortran incremental compile		2-3 minutes	45 seconds
Reconfiguration task, used to produce the initial conditions file.	3-4 minutes (Intel, 6×4)	15-30 seconds (GNU, 4×9)	25-30 seconds (GNU, 1×2)
Atmosphere task	40 seconds (Intel, 6×4)	45 seconds (GNU, 4×9)	12 minutes (GNU, 1×2)

Compiler settings	Safe	Safe	Rigorous
Number of UM OpenMP threads	0	2	2
Approximate run-time on 2-core VM (1×2) (minutes)	8	11	29
Approximate run-time on 4-core VM (1×2) (minutes)	8	4	17
Approximate run-time on 4-core VM (1×4) (minutes)	5	8	22
Approximate run-time on 8-core VM (1×4) (minutes)	5	3	14
Approximate run-time on 8-core VM (1×8) (minutes)	3	6	26
Approximate run-time on 16-core VM (1×8) (minutes)	3	3	22

Compile type	GNU gfortran compiler flags	Number of UM OpenMP threads	Total VM memory required (GB)
safe	-02 -Werror	0	6
safe	-02 -Werror -fopenmp	2	6
rigorous	-00 -Wall -ffpe-trap=invalid,zero -fbounds-check -Warray-bounds -fcheck-array-temporaries -finit-real=nan -fimplicit-none -fopenmp	2	8

Training VMs on JASMIN

JASMIN

Ansible playbooks for this system are available via GitHub: https://github.com/theabro/ukca-playbook

Training VMs on JASMIN

JASMIN

https://www.youtube.com/watch?v=5V3RBCYTQvg

... X X2GO-ukcatr01-50-1611739014_stDLXDE_dp32 u-cb681 - ukca-vm01.novalocal:43016 0 - D x le config-edit File View Control Suite Help View 2: None 🗅 🔳 Þ 🗸 View 1 T.finish dT-mean latest message state ioh ID T-submit T-start and chemistry 7 🔽 1 VM running succeeded localhost a 09:20:22Z 🔿 true iob(01) started Stratospheric+Tropospheric (51) 🗘 O true ukcatr01@ukca-vm01: ~/cylc-run/u-cb681/work/1/atmos/pe_output File Edit Tabs Help ukcatr01@ukca-vm01:~/cvlc-run/u-cb681/work\$ ls kcatr01@ukca-vm01:~/cvlc-run/u-cb681/work\$ cd 1/ fcm make/ recon/ kcatr01@ukca-vm01:~/cylc-run/u-cb681/work\$ cd 1/ fcm make/ recond bukca-vm01:~/cylc-run/u-cb681/work\$ cd 1/atmos/pe output/ ukcatr01@ukca-vm01:~/cylc-run/u-cb681/work/1/atmos/pe_output\$ ls mos.fort6.pe0 atmos.fort6.pe1 atmos.fort6.pe.stdout ukcatr01@ukca-vm01:~/cylc-run/u-cb681/work/1/atmos/pe_output\$ tail -f atmos.fort unning to stop at 1 (filtered:) live .0000E+00 ype 'copyright', 'credits' or 'license' .0000E+00 Section 35 - Stochastic Sc Python 7.16.1 -- An enhanced Interactive date pattern: updating coeffc and coeffs Section 39 - Nudging sing matplotlib backend: TkAgg inear solve for Helmholtz problem [1]: import iris Outer Inner Iterations InitialError FinalError (i) (ii) (ii) 000E+01 0.461313E-04 [2]: Qcf < 0 fixed by PC2, (7 occurances) Qcl < 0 fixed by PC2, 4 occurances 1 - 0 📰 ukcatr01@ukca-vm01:... 📰 ukcatr01@ukca-vm01:... 📰 IPython: home/ukcatr01 🚯 u-cb681 - rose config-e... 1 u-cb681 - ukca-vm01

connect to their VM using a number of methods e.g. X2Go, MobaXTerm, or Terminal/X11 Set-up video with

Students could

Set-up video with demonstration available on the UKCA YouTube channel.

