

Proposed Application Program Interface Design for UKCA

John Hemmings, July 2020, v5

with thanks to Luke Abraham for code owner review

Contents

1. Introduction ... 1

2. General Design Principles ... 3

3. Elements of the Interfaces for UKCA and RADAER ... 6

3.1 Input and Output Data .. 6

3.2 Parent-specific Subroutines Required .. 9

3.3 Specific Design Aspects.. 10

3.4 Provisional UKCA API Subroutines .. 21

3.5 Provisional RADAER API Subroutines .. 24

4. Implementation ... 26

4.1 Overview of Work Completed .. 27

4.2 Overview of Further Work Required ... 30

4.3 UKCA Changes Required for Prognostic Aerosols in LFRic 32

4.4 Further UKCA Changes Required for Full Chemistry in LFRic 34

4.5 RADAER and GLOMAP-CLIM Changes Required for LFRic 34

4.6 Remaining UKCA Changes Required for Independence from UM 35

4.7 UKCA/RADAER Changes Specifically for Testbeds .. 35

4.8 Further Priority Improvements to Standalone Code .. 36

4.9 UM Changes Required for Compatibility with Future UKCA Development 36

Appendix: Categorisation of Modules .. 40

1

1. Introduction

UKCA is currently an integral part of the Unified Model, making use of many UM-specific

procedures internally and communicating with other parts of the UM via a large number of

shared modules. In preparation for its use in LFRic, it is in the process of being re-packaged

as a standalone code with a well-defined API and will subsequently be moved to its own

repository. This will also allow it to be coupled with other models or applications. A

prospective parent application may be an atmospheric model (3-D or single column), a test

harness or some other testbed system for model analysis.

The API implementation will preserve UM compatibility and the present functionality of

UKCA within the UM rather than produce a divergent code base. This is necessary to ensure

that future code improvements can benefit UM and non-UM applications alike. This

document presents the proposed API design for UKCA and an implementation plan for

refactoring UKCA as a standalone sub-model within the UM using this API. The text has

been revised since implementation started at UM vn11.4 to include a number of design

changes and to reflect the current situation at vn11.7. In addition, the scope has been

extended to include GLOMAP-CLIM and RADAER.

GLOMAP-CLIM provides an alternative to the full GLOMAP-mode aerosol sub-model of

UKCA that can be used for calculating cloud droplet condensation number based on a

prescribed set of GLOMAP aerosol fields and/or for providing RADAER input data based on

these fields. GLOMAP-CLIM will be treated as a simple UKCA configuration. It will share

UKCA namespace and become part of the standalone code. It should be possible to build

GLOMAP-CLIM from a minimal subset of UKCA source files.

RADAER is responsible for calculating aerosol optical property profiles consistent with a set

of GLOMAP-mode aerosol profiles. It is called separately from UKCA, via the UM’s radiation

processing, but is dependent on GLOMAP-mode aerosol data from UKCA or from GLOMAP-

CLIM. Like UKCA, it will need to be ported to LFRic and it would ideally be available in other

parent applications too, alongside UKCA, for studying the direct radiative effects of UKCA’s

aerosol fields. UKCA is not currently dependent on RADAER. RADAER will not share

UKCA’s namespace but will be presented as a separate standalone code with its own API

for interfacing with a parent application. It will be able to communicate with UKCA using the

UKCA API but it should also be useable without UKCA so that applications calling RADAER

will not necessarily need to be built with UKCA source files. It’s close association with UKCA

makes it sensible to keep it in the same repository as the core UKCA model when the new

UKCA repository is set up.

All advection, diffusion and mixing of UKCA tracers will remain the responsibility of the UM

or alternative parent model. Convective plume scavenging for UKCA aerosols is currently

integrated with UM convection to improve the accuracy of the aerosol removal fluxes

(although diagnostics related to plume scavenging are handled within the UKCA time step).

The details of the processing required for plume scavenging are convection scheme

dependent. For this reason and because the UKCA-specifics are relatively simple, plume

scavenging (including the diagnostic handling) will also remain the responsibility of the UM

2

(or alternative parent model) and not be supported within the new UKCA standalone code

base.

A set of general design principles to be followed is given in Section 2. Section 3 outlines

design considerations specific to UKCA and RADAER and Section 4 gives an outline of the

outstanding refactoring work required to implement the new APIs within the UM with a brief

overview of changes already made from vn11.4 to vn11.7.

3

2. General Design Principles

1. UKCA will be available to a parent application via a single API module

(ukca_api_mod or glomap_clim_api_mod) as a minimal set of top-level

subroutines. These will include subroutines to perform functions including setting up

the UKCA configuration prior to a model run, executing a UKCA time step and doing

housekeeping at the end of the model run. A number of other top-level subroutines

will provide additional functionality. The API may also include fixed UKCA

parameters. The inclusion of UKCA type definitions in the API is strongly discouraged

since any parent access to members of such derived types would inhibit independent

UKCA development.

2. Names of all subroutines and parameters presented via the API will start with ukca_

to avoid polluting the parent’s namespace.

3. All run-time communication between the parent model and UKCA will be via

argument lists.

4. Where UKCA is required to perform processing that is parent model-specific, the

processing will be encapsulated in a generic internal subroutine that will reference a

parent model subroutine, or handler, conforming to a UKCA specification. The

handler will be passed to UKCA via a top-level subroutine call. The alternative of

providing parent versions of specific subroutines at compile-time will be supported by

ensuring that each generic internal subroutine has its own module that could

potentially be replaced in the build process.

5. It must be possible to run UKCA for a given period without doing any file IO during

the run. This will be particularly important for future UKCA parameter

perturbation/optimization experiments where a large number of integrations will be

required with almost identical input data and no file output. For such experiments, the

domain and/or time period are typically restricted compared with production cases

and it is most efficient to keep all required input data in memory (managed by the

parent application) between runs.

6. UKCA will not read any input data directly from external files. All input will be passed

from the parent via API subroutine arguments. The parent will be responsible for

sourcing these data but UKCA should provide library routines for reading file formats

that are UKCA-specific. These library routines will be additional to the API, in that

they will not use the UKCA namespace. They will instead pass the data read to the

parent as output arguments. Each library routine will provide minimal functionality to

allow the parent as much flexibility as possible in how (and from which files) the data

are retrieved and handled before passing to UKCA.

7. Any output to external files from within UKCA subroutines will be under the control of

the parent model. To achieve this, the parent will pass control data and/or a handler

routine to UKCA via an appropriate top-level subroutine.

8. All UKCA state variables (tracers and non-transported prognostics) will be available

to the parent model between time steps, as native FORTRAN arrays, for inspection

and possible modification. The fields in these arrays, and those in any diagnostics

arrays, will be in an order specified by UKCA independently of a particular parent

application. Within the arrays, specific fields and their positions may differ between

4

different UKCA configurations. The actual lists of fields will be determined by field

names retrieved by the parent from UKCA at run time.

9. The state variables will be passed to UKCA via the main time step subroutine.

Separate top-level subroutines will be provided for initialising/updating other input

data such as the physical environment, emissions and other drivers. These data will

optionally be allowed to persist between time steps within UKCA until the next

update. This will reduce overheads in cases where UKCA is run with a fixed or

partially-varying environment. It should also help to avoid excessively long argument

lists. However, it does rely on the use of module variables for spatial fields which is

not LFRic-compatible since it is not thread-safe for multiple columns running in

parallel on a single node. An alternative thread-safe approach will therefore be

supported that handles all spatial fields that may vary horizontally in the parent

application via a single UKCA API call at each time step.

10. The subroutine for executing a UKCA time step will only process spatial fields that

are specified on the UKCA model grid (which is configurable by the parent) and have

the appropriate time of validity. Any spatial or temporal interpolation that may be

required will be the responsibility of the parent. This will allow a parent maximum

flexibility for memory management where multiple instances of the model grid are

distributed over processing elements in a parallel environment.

11. UKCA input fields will be expected to span the relevant dimensions of UKCA’s spatial

domain (as defined in the current configuration) but may extend beyond this (e.g. to

allow for halos used by the parent). To allow for parent applications running UKCA in

a 1-D or 0-D context, the relevant top-level subroutine arguments will be overloaded

to allow use of actual arguments with appropriate dimensions.

12. It must be possible to run UKCA without internal persistence of horizontally varying

spatial fields between time steps (as required for LFRic). Whether or not persistence

is to be supported internally will be under the control of the parent via UKCA’s

configuration settings.

13. Whether or not temporary workspace used by UKCA is released between UKCA time

steps will likewise be under the control of the parent model via UKCA’s configuration

settings.

14. The housekeeping subroutine, to be called by the parent in cases where multiple

runs are supported, must ensure that all allocatable internal storage is released and

any configuration or status information is cleared ready for the next run.

15. On encountering a fatal error condition, UKCA will optionally return control to the

parent model with an appropriate UKCA-specific error code and message and the

name of the routine where the error was trapped. This option, controlled via UKCA

configuration settings, will allow the parent model to either abort or continue without

the results of the current UKCA call as required. If this option is not selected or a

warning condition arises, the same information will be passed to a parent model

handler if one is provided. The parent handler may then output messages and/or

abort.

16. The API should allow input data to be validated before starting a model run, at least

to the extent that this is practical. This will be helpful when a parent application needs

to run large ensembles with varying input data because it will allow the parent to

perform input data checks for all ensemble members and trap errors early on before

initiating any of the runs.

5

17. RADAER will be available to a parent model via a separate API module

(ukca_radaer_api_mod) following the above principles (where applicable). Names

will start with ukca_radaer_.

6

3. Elements of the Interfaces for UKCA and RADAER

This section describes the elements of UKCA and RADAER that must be supported by the

new APIs (Sections 3.1 and 3.2). For the UKCA API, that is all data currently transferred

between the UM or RADAER and UKCA and all UM procedures currently called from UKCA.

For the RADAER API, it is all data currently transferred between the UM and RADAER and

UM procedures currently called from RADAER. Some specific aspects of the API design are

then discussed (Section 3.3) and a provisional list of API subroutines is given (Sections 3.4

and 3.5).

For the purposes of considering UKCA as a distinct entity within the UM, it will be defined by

its core functionality as provided by the following subroutines.

• ukca_setup

• ukca_set_environment

• ukca_set_emissions_from_nc

• ukca_set_oxidants_from_nc

• ukca_main1 (called as ukca_step)

• glomap_clim_arg_act_get_cdnc

• glomap_clim_jones_act_get_cdnc

• prepare_fields_for_radaer

RADAER will be defined by its core functionality as provided by

• ukca_radaer_read_luts

• ukca_radaer_read_precalc

• ukca_radaer_set_aerosol_fields

• ukca_radaer_prepare

• ukca_radaer_band_average

• ukca_radaer_compute_aod

• ukca_radaer_3d_diags

3.1 Input and Output Data

The different categories of input and output data are listed here with their

sources/destinations, in the UM context, given in parentheses.

UKCA Input Only Data:

• Parameters, options and other user supplied configuration data (from run_ukca and

run_glomap_aeroclim namelists via UM modules or ukca_setup argument list)

• Domain configuration data: field dimensions etc (from UM modules)

• Fast-JX photolysis specification data (from sequential files)

7

• Environmental driver fields: atmospheric physics and land surface,

CLASSIC/aeroclim aerosols for heterogeneous chemistry, geographical location

(from UM via ukca_set_environment argument list)

• GLOMAP-mode aerosol mixing ratio fields for GLOMAP-CLIM (from NetCDF files via

D1 array or glomap_clim_jones_act_get_cdnc argument list)

• Emissions (from NetCDF files)

• Offline oxidants (from NetCDF files)

• Reference data including aerosol surface area density climatology for heterogeneous

chemistry, data for 2-D photolysis, Cambridge 2-D model data and ozone ancillary

data for top boundary conditions and RCP scenario data for lower boundary

conditions of long-lived gases (from sequential files)

• Concentrations of long-lived gases from radiation scheme (from UM via

ukca_set_environment argument list).

• Requests for diagnostics (from STASH system data)

• Constants (from UM modules)

UKCA Input/Output Data (model state):

• Tracers (from/to UM via ukca_main1 argument list)

• Non-transported prognostics, including GLOMAP-mode aerosol properties required

by RADAER (from/to UM via ukca_main1 argument list)

UKCA Output Only Data:

• GLOMAP-mode aerosol properties required by RADAER, if using GLOMAP-CLIM (to

UM’s ukca_radaer structure directly from prepare_fields_for_radaer)

• GLOMAP-mode configuration data required by RADAER (to UM’s ukca_radaer

structure from UKCA module)

• Diagnostics (to STASH system)

• Log output and error messages (to sequential files)

• Test output optionally produced by UKCA when lower BCs for long-lived gases are

read (to sequential file)

RADAER Input Only Data:

• Option l_ukca_radaer_sustrat (from run_ukca and run_glomap_aeroclim

namelists via UM modules)

• Domain configuration data: field dimensions etc (from UM via argument lists)

• Radiation scheme spectral configuration data for shortwave/longwave band (from

UM’s spectrum structure via ukca_radaer_band_average and

ukca_radaer_compute_aod argument lists)

• Optical property look-up tables (from files in namelist format)

• Pre-computed variables (from sequential ‘Pcalc’ file)

• GLOMAP-mode configuration data (from UM’s ukca_radaer structure via argument

lists)

• GLOMAP-mode aerosol mixing ratio profiles (from UM via

ukca_radaer_set_aerosol_fields argument list)

8

• GLOMAP-mode aerosol properties profiles: modal diameters and densities and

partial volumes of components (from UM via

ukca_radaer_set_aerosol_fields argument list)

• Other environment data: tropopause level, temperature, pressure (from UM via

ukca_radaer_set_aerosol_fields and ukca_radaer_prepare argument

lists)

• Constants (from UM modules)

RADAER Output Only Data:

• Number of aerosol modes (to UM via ukca_radaer_set_aerosol_fields

argument list)

• Aerosol optical properties for shortwave/longwave band (to UM via

ukca_radaer_band_average argument list)

• Modal mass mixing ratio fields (to UM via ukca_radaer_prepare argument list)

• Diagnostics (to UM via ukca_radaer_3d_diags argument list)

• Log output and error messages (to sequential files)

The above lists may not account for all variables that are transferred by direct usage from

shared modules. It will be necessary to identify all such variables during the implementation

work. The test output functionality relating to lower BCs for long-lived gases is no longer

required as part of UKCA and can be removed to a standalone script.

UKCA provides much of the input data required for RADAER but not without some additional

handling by the UM. In part, this is because the two models are called for different sub-

domains. RADAER performs calculations on a set of vertical profiles at arbitrary horizontal

locations. However, UKCA calculations are done on a regular 3-D spatial grid and the input

data for RADAER is prepared on the UKCA grid. The main RADAER subroutines may be

called multiple times to process different sets of profiles from this grid (and are called

separately for shortwave and longwave radiation bands). A translation step is therefore

required to extract and rearrange the required data for each RADAER call. In addition, when

the data are provided by UKCA itself, rather than GLOMAP-CLIM, they are first written to the

UM’s D1 array and not used as input to RADAER until the next time step. This is required to

support the UM’s restart capability.

The translation between data on the UKCA grid and the input arrays required by RADAER

depends on details of the UM and/or SOCRATES configuration and reflects system-

dependent memory management considerations. Requirements are likely to differ between

applications so this data handling will remain the responsibility of the parent. For applications

that do not need different handling for data from UKCA and GLOMAP-CLIM, ensuring that it

is possible to get output from either in a consistent form would be beneficial. Also, in reduced

dimension applications (e.g. a single column testbed), the overhead of translation might be

avoided with careful API design. The UKCA and RADAER APIs should allow for the direct

use of UKCA or GLOMAP-CLIM output arrays as RADAER inputs in such use cases but not

at the expense of increasing complexity for other cases.

A further consideration regarding the use of the APIs in applications with domains of different

dimensions is the need for the API subroutines to be able to handle spatial arrays of the

appropriate dimension for each application. For example, it should be possible to call

9

ukca_step with a tracer array having 3, 2, 1 or 0 spatial dimensions (2-D calls might be

used in the context of stratospheric modelling). Likewise, RADAER might be presented with

a single profile for each required variable, rather than an array containing profiles at multiple

locations. (Note that such flexibility would be needed for the direct use of UKCA output

arrays for RADAER input suggested above.)

3.2 Parent-specific Subroutines Required

At present, the following UM-specific subroutines are called from within both UKCA and

RADAER.

• Print management for output to log file: umprint

• Error/warning handling: ereport

• Dr Hook timer calls: dr_hook

In addition, the following are called from within UKCA.

• NetCDF access: subroutines in emiss_io_mod

• Sequential file access: ukca_2d_bc_read_interp, ukca_read_aerosol,

ukca_read_reff, ukca_scenario_rcp, read2d_opt and read subroutines in

module fastjx_specs

• Boundary layer mixing and addition of emissions to model levels: tr_mix, trsrce

• Humidity routines: qsat, qsat_wat_mix, lsp_qclear

• Vertical integration of mass in UKCA for plume scavenging diagnostics, using an

ENDGAME-specific scheme: ukca_eg_tracers_total_mass_fix

• Time interpolation of emissions/offline oxidants: t_int

• CLASSIC aerosol surface area and wet radii calculation: calc_surf_area

• Marine DMS emissions flux: dms_flux_4a

RADAER also calls read_nml_ukcanml to obtain the optical property look-up tables.

In many cases, the UM-specific subroutines are required because of the specifics of IO

handling in the MPI parallel environment (i.e. reading on PE0 and broadcasting to other

PEs). Sequential file access additionally involves calls to the UM file manager

(assign_file_unit and release_file_unit).

All input from external files will remain the responsibility of the UM, or an alternative parent

application, as indicated in Section 2 (Item 6). To avoid undue complexity and give the

parent maximum flexibility for sourcing these data, all processing that involves file input will

be moved outside the UKCA/RADAER subroutines and remain part of the UM code base.

Appropriate UKCA library routines (additional to the API) should be provided for the parent to

call where file formats are UKCA/RADAER specific. These would be minimal in terms of

functionality, giving the parent as much flexibility as possible. In particular, they would not

include opening and closing of files. This will allow for the continued use of the UM file

manager calls for assigning and releasing file units. It also means that data that are currently

read from multiple files could, for example, be read from a single file if required.

10

Time interpolation will likewise remain the responsibility of the parent. UKCA will expect to

receive fields valid for the current time step.

The plume scavenging diagnostics code currently resides within ukca_main1 and will also

need to be moved out so that it remains part of the UM code base. The calculation of surface

area and wet radii of CLASSIC aerosols, required for heterogenous chemistry in the RAQ

chemistry scheme, could also remain the responsibility of the UM with only the results being

passed to UKCA.

The Marine DMS flux routine is not UM specific, being based on simple calculations from the

scientific literature and is probably best duplicated for use in UKCA.

Dr Hook timer calls from UKCA will be retained for use with the UM but will be disabled by

use of a dummy library when the UM is unavailable. The required dummy library modules

can be included in the UKCA code base.

Other UM-specific subroutine calls still in ukca_main1 or in other UKCA subroutines will

require replacement by more generic calls. These will allow indirect access to UM

subroutines when used in the UM or to substitutes when used with a different parent. Each

generic subroutine will have its own module that could potentially be replaced in the build

process, as indicated in Section 2 (Item 4), as an alternative to run-time assignment of a

parent handler. The remaining subroutines are umprint, ereport, tr_mix, trsrce,

qsat, qsat_wat_mix and lsp_qclear.

3.3 Specific Design Aspects

Code structure

Calls to UKCA, GLOMAP-CLIM and RADAER from the parent application should be grouped

into as small a number of API subroutines as possible without compromising flexibility. For

each, there will be

• a set up subroutine to define details of the configuration that is called once, before

the start of the run

• one or more subroutines to provide input data that may or may not change between

time steps (including environment data, emissions and diagnostic requests)

• a subroutine to perform the core model calculations at each time step

• if required, a ‘housekeeping’ subroutine to do any final processing needed after the

run completes.

UKCA already conforms to this structure (although there is no final subroutine at present as

it is not needed for the UM).

For GLOMAP-CLIM, the set-up processing is performed by a specific GLOMAP-mode set up

routine ukca_setup_mode_sussbcoc_5mode that is internal to UKCA and supports a

single GLOMAP configuration. A GLOMAP-CLIM set up routine will be provided in the API to

11

call ukca_setup_mode_sussbcoc_5mode and protect the parent from potential internal

changes to UKCA. The GLOMAP-CLIM set up routine could then be extended in future to

support multiple GLOMAP configurations. The provision of a GLOMAP-CLIM-specific set-up

routine separate from that for UKCA is desirable to reduce the number of UKCA modules

that need to be built for GLOMAP-CLIM runs.

GLOMAP-CLIM’s core functionality is provided by subroutines

glomap_clim_arg_act_get_cdnc, glomap_clim_jones_act_get_cdnc and

prepare_fields_for_radaer. It should be possible to combine these under a single API

subroutine call.

For RADAER, the set-up processing is divided between the routines

ukca_radaer_read_luts and ukca_radaer_read_precalc. Some of this involves

reading external files and will not be included within RADAER. Most of the remaining

processing will be called via a single RADAER set-up routine but an additional setup

subroutine may be required for handling look-up table data (details are given under the

heading RADAER Look-up Table and Pre-calculated Variables below).

Core RADAER calculations in the UM are divided between subroutines

ukca_radaer_prepare, ukca_radaer_band_average, ukca_radaer_compute_aod

and ukca_radaer_3d_diags. These communicate with each-other via the UM subroutine

set_aer that is called separately to process shortwave and longwave bands. The 4

subroutines will be combined to simplify the interface and avoid the need for the parent to

handle variables that are only relevant to RADAER.

Configuration Data and Fast-JX Specifications

In the UM, UKCA configuration data are read in from a namelist which is updated via the

Rose GUI. This functionality is UM-specific and will remain the responsibility of the parent.

UKCA obtains configuration data via the ukca_setup subroutine call and the equivalent

GLOMAP-CLIM subroutine call will receive GLOMAP_CLIM configuration data. Other

configuration data such as domain dimensions are defined by the UM or input to the UM via

other namelists. These will similarly be passed to UKCA as subroutine arguments.

Different UKCA configurations require different subsets of configuration variables so the

values of individual variables are specified by optional arguments to avoid unnecessarily

long argument lists. In future developments, the set of configuration variables used in the

standalone code may change independently of a particular parent as new functionality is

added. Use of keyword arguments in the subroutine call will avoid backward compatibility

issues arising from the re-arrangement or addition of variables. Removal of variables should

only be considered at major version changes. The API documentation should indicate that

positional argument association is not explicitly supported and, if used, may produce

unexpected results due to change in the number and/or position of arguments in future

UKCA versions.

In addition to the user-defined configuration data, UKCA requires a set of specification data

for the Fast-JX photolysis scheme including some species-specific data. In the UM, the

specification data are read from sequential files at the first time step, using subroutines in

12

module fastjx_specs. The details of the data set are specific to the Fast-JX scheme (part

of UKCA) and are not configurable via the GUI. In accordance with Section 2 (Item 6),

retrieval of the Fast-JX data from external files will remain the responsibility of the parent and

will now be done before setting up UKCA. This means that the species for which UKCA will

handle configuration data will be determined by the species present in the input file rather

than those present in the chemistry scheme (but UKCA will ensure that data for all required

species are present). UKCA will obtain the data via the ukca_setup call. The UKCA-

specific nature of the data format in the Fast-JX files means that UKCA library routines

should be provided for reading in the data.

RADAER configuration data comprise domain data, spectral data and GLOMAP-mode data

(as well as some additional data provided by sequential files covered under the heading

RADAER Look-up Tables and Pre-calculated Variables below). The domain configuration

data can be handled in the same way as UKCA data via a RADAER setup subroutine.

Spectral configuration data require different treatment since these inputs change according

to the spectral band being processed. The required spectral configuration variables will

therefore be passed to RADAER at each call to the main calculation subroutine instead of

being fixed in the initial setup. GLOMAP-mode configuration data will typically be obtained

direct from UKCA via a UKCA API call. This will hide unnecessary complexity from the

parent. However, to allow for the possibility of running RADAER with offline data when

neither UKCA or GLOMAP-CLIM are available, there will be an option to provide GLOMAP-

mode configuration variables via the RADAER setup routine. For this use case, it must be

possible to disable UKCA API calls from RADAER using a compiler directive when UKCA

modules are not included in the build.

Parent access to configuration data will be provided via a UKCA or RADAER API subroutine

call. Configuration variables accessed in this way will give the definitive values that are

actually used within the application. These may be defaults where values are not supplied in

the set-up call. Internal configuration variables may be made available via the API call as

well as those set explicitly from parent supplied values.

RADAER Look-up Tables and Pre-calculated Variables

Some additional data from sequential files are required for setting up RADAER. There is a

set of 6 files giving optical properties for different aerosol modal distributions and

wavelengths and the ‘Pcalc’ file that gives pre-calculated values of a number of required

variables.

ukca_radaer_read_luts calls ukca_radaer_lut_in for each file in the set of 6 optical

properties files and ukca_radaer_lut_in reads the data and saves it to the appropriate

part of the look-up table (LUT). Currently the LUT is passed from

ukca_radaer_read_luts. The LUT is only used within RADAER and should be internal

but the file input should remain the responsibility of the parent. The data flow will be re-

arranged accordingly, transferring the data to RADAER using an API subroutine. Because

the data from each file share a common format, multiple calls to the same subroutine may be

preferable to transferring all the data in a single subroutine call since this will avoid

13

unnecessary complexity. This does preclude the use of the main RADAER set-up subroutine

for the purpose, so an additional LUT entry set-up routine would be required.

The subroutine ukca_radaer_read_precalc reads pre-calculated variables into a

structure called precalc that is then used within RADAER. Like the LUT data, these data

need to be read in by the parent before being transferred to RADAER. RADAER will obtain

the data via its main set-up subroutine and will be responsible for validation checks that are

currently done during the file read process.

In the case of both LUT data and pre-calculated variables, the file formats are RADAER-

specific so RADAER should provide library routines for reading the data.

Tracers and Non-transported Prognostics

Formerly, the UKCA species in the tracer array passed to ukca_main1 were determined

with reference to the STASH system. (Their order matched the order of these fields in the

UM STASH master file, with the actual indexing determined by which fields were active.) For

UKCA to be developed independently, it must be possible to modify its tracer list in future

work without reference to a particular parent model, so this is no longer the case. From UM

vn11.5, the tracer species present in the array passed to UKCA are determined directly by

UKCA on the basis of its configuration data, once the model has been set up for a particular

run. The parent now retrieves a list of field names from UKCA prior to initiating a run and

must provide an array of tracer field values matching this list. The same process is followed

for non-transported prognostics. In both cases, the specific fields and their positions may

differ between different UKCA configurations.

Parent field dimensions may differ from UKCA’s internal field dimensions determined by

model domain information. For example, there may be halos extending the horizontal

dimensions or additional levels in the vertical that are not processed by UKCA (e.g. level 0

required in the UM for ENDGAME). UKCA does not make assumptions about the extent of

any of its input fields but does ensure that the data at least span the required domain and

that only the required extents are handled internally. This simplifies the internal processing

and will avoid overheads associated with redundant regions that could potentially be large.

Some further changes to the handling of tracers and non-transported prognostics would

improve the interaction between UKCA and RADAER as described below. These could be

implemented at any time without affecting backwards compatibility.

There are two categories of non-transported prognostics: those which are output for use as

prognostics in UKCA and those which are output for use as prognostic environmental driver

fields in RADAER (i.e. the GLOMAP-mode aerosol properties fields). The latter are not

actually required as UKCA inputs. For some applications, they would ideally be separated in

the output so that they could be passed to RADAER directly. This is not required for the UM

because the UM passes UKCA fields to RADAER via D1 to support its restart capability and

it is more convenient to handle them with other NTPs as a single array. Output of fields

separately for RADAER will therefore be provided as an option (possibly controlled by

whether optional arguments are supplied that correspond to the specific arrays required by

RADAER).

14

The GLOMAP-mode aerosol mixing ratio fields required by RADAER are the GLOMAP-

mode tracers in the UKCA tracer array. Splitting up the tracer array to present GLOMAP-

mode tracers directly to RADAER is undesirable because a parent typically needs to handle

tracers as a single array. However, additional optional arguments could hold copies of the

GLOMAP-mode mixing ratio fields in the required form for RADAER, leaving the tracer array

intact.

Environment Data

Environment data refers to input fields, other than the tracers and non-transported

prognostics, that are provided on the model grid. These environmental ‘drivers’ may come

from a variety of different sources and different fields might need to be updated at different

times in some applications (or not updated at all). The fields can also have different

dimensionality and extents. For these reasons, the API does not attempt to handle the

environment data as a single array of fields but instead allows each field to be set separately

by name. Like the tracers and NTP fields, environment fields passed in by the parent may

extend beyond the required domain but only the required extents are handled internally.

For flexibility, UKCA environment data are set by calling a new top-level subroutine

ukca_set_environment instead of being set in the call to ukca_main1 and each call

sets a single named field. In applications where some or all environment data are fixed, the

fixed fields can be set at the beginning of a run and need not be updated. ukca_main1 now

has extra validation that ensures that all required fields are set. UKCA provides the parent

with a list of required fields by name on request via an API call

(ukca_get_environment_varlist). However, it will not fail to run if additional fields are

set.

Scalar concentrations of long-lived gases are treated as a special case of environment data

and are updatable by name in the same way.

At present, GLOMAP-CLIM gets its environment data directly from the UM’s D1 array or via

the argument list to glomap_clim_jones_act_get_cdnc. These data comprise the

GLOMAP aerosol mixing ratio fields that are handled as tracers in UKCA together with some

physical fields. In the standalone code, GLOMAP-CLIM will handle environment data in the

same way as UKCA, taking advantage of the existing API routines. This will require

GLOMAP-CLIM to include checks like those at the beginning of ukca_main1 to ensure that

all required fields are available for the selected configuration. Advantages are that it will

improve consistency with other UKCA configurations and allow more flexibility for individual

GLOMAP aerosol fields to be updated as and when required (i.e. not necessarily at every

time step). The capability for a parent to update fields individually will also make it easier to

add different GLOMAP-mode configurations in future.

RADAER’s environment data comprise the GLOMAP aerosol mixing ratio profiles, profiles of

properties derived from the aerosol mixing ratio fields either by UKCA or by GLOMAP-CLIM

and physical profiles. The aerosol profiles are handled as a set of mode-related variables

(with mode index as an additional dimension) and a set of component-related variables (with

component index as an additional dimension). If GLOMAP-CLIM is used to provide the

15

RADAER aerosol data, it will provide a set of output fields that are consistent with this but

may have different spatial dimensions depending on configuration details. If UKCA is used,

then the same set of RADAER aerosol arrays should be available as an option (as indicated

in Tracers and Non-transported Prognostics above), although this will not be used by the

UM.

Like UKCA and GLOMAP-CLIM, RADAER will obtain its environment data via a parent call

to a separate API routine from the one that does the core calculations. This will mean that

the data will typically only need to be passed once for use in both shortwave and longwave

calculations. The list of environment profiles required by RADAER has some limited

configuration dependency (tropopause is only needed if l_ukca_radaer_sustrat is

true). An equivalent of ukca_get_environment_varlist will therefore be needed to

provide the parent with the details. The specific profiles included for each mode and

component are also configuration-dependent and the parent may need to use mode

configuration data obtained from UKCA via an API call to determine how to compose the

required arrays. This will be necessary in the UM when the data are extracted from D1 but

will not be necessary when using GLOMAP-CLIM or in applications where UKCA already

outputs arrays in the required form.

The equivalent of ukca_set_environment for RADAER will be based on

ukca_radaer_set_aerosol_fields. This will not do any sub-selection of profiles

currently done therein: instead the parent will be expected to pass only the specific profiles

that are to be processed in the subsequent RADAER call. The case for updating fields

individually as done in UKCA does not apply to the aerosol fields because they are expected

to be a consistent set. They could therefore be updated together in a single API call.

However, there may be cases where physical environment profiles require updating while

the aerosol fields do not, or vice versa. This, together with the configuration dependency of

the physical fields, may be best handled by updating fields individually by name as in UKCA.

A common UKCA-style approach is therefore recommended for both physics and aerosol

fields. The resulting consistency throughout the code base should make the code clearer

and easier to maintain and the API easier to understand. RADAER will need a validation

step like that in UKCA to ensure that all required environment fields are set before use.

Reference Data Sets

Reference data, as referred to here, are distinct from environment data because they are

defined on an arbitrary geographic grid, or sometimes throughout the model domain, and

generally contain instances associated with multiple times. In accordance with Section 2

(Item 10), reference data defined on an arbitrary grid will not be processed directly by UKCA.

Instead, they will need to be converted to fields on the model grid and interpolated to the

current time by the parent. The resulting fields can then be treated as environment fields and

passed to UKCA using ukca_set_environment.

Reference data that may be required, depending on the configuration, include top boundary

condition data (currently read in ukca_2d_bc_read_interp) and aerosol climatology data

(currently read in ukca_read_aerosol and ukca_read_reff) and yearly time series for

long-lived gases read from an RCP data file (currently read in ukca_scenario_rcp). If the

16

2-D photolysis scheme is selected, reference data will also be required for species

photolysis rates. These fields are currently read from external files and interpolated to the

required grid and time within ukca_main1 so that functionality must be moved outside the

UKCA call and will remain part of the UM code base. If similar functionality is later needed by

non-UM applications for running UKCA, it could potentially be supported by UKCA library

routines additional to the API but these would not have access to UKCA’s namespace (see

Section 2, Item 6). For the long-lived gases, there is currently an option to write test output to

a file after reading data from an RCP file. This functionality is best provided by a standalone

script and will be removed from UKCA.

Emissions and Offline Oxidants

Currently, emissions and offline oxidants are read from NetCDF files and time-interpolated

within the subroutines ukca_set_emissions_from_nc and

ukca_set_oxidants_from_nc. As indicated in Section 3.2, all file input is to be moved

outside UKCA and will become the responsibility of the parent. The parent will then obtain

the set of fields from external files (or some other source) and pass individual fields to UKCA

in a similar way to the standard environment fields. Fields passed to UKCA will be expected

to map directly to the UKCA grid and be valid for the time step or time steps at which they

will be applied. The two existing routines will be divided up to separate the UM and UKCA

processing accordingly.

Emissions differ from standard environment fields in that the number of emission fields is

determined by the parent. In addition, the fields have associated attributes. However, the

number of offline oxidants is determined by UKCA and, although the offline oxidant fields do

have associated attributes these attributes should not be needed for the processing that will

remain the responsibility of UKCA. It should therefore be possible to handle the offline

oxidant fields as standard environment fields passed to UKCA via calls to

ukca_set_environment.

For emissions, a key attribute tracer_name gives the name of the emission that indicates

which tracer it will be emitted into. There can be multiple fields with the same tracer_name

value. The valid values of tracer_name depend on the UKCA configuration and are

determined during the call to ukca_setup.

To determine which fields to pass to UKCA, the parent needs to obtain a list of the expected

emission fields via an API subroutine call and select any matching fields from those that may

be available. It must then indicate the total number of fields to be supplied before UKCA can

allocate its internal emissions structure comprising a derived type array with one or more

array entries for each field (aerosol emissions have multiple entries to represent emissions

into different modes). Once the structure is allocated, a parent will be able to add emission

fields individually via another API call. This will register the fields with UKCA and provide

their attributes. A further API subroutine will be called to pass the actual field values for

initialisation or update during the run.

Each field registered will be identified by an emission number. A parent will need to maintain

a record that relates this number to its source. In the UM context, this will be a NetCDF

17

filename and variable name. UKCA will allow a parent-supplied identity label to be held

against each emission for use in any error messages generated. This might for example be

a concatenation of the file and variable names.

Each time series of emission fields in UKCA can have additional spatial data associated with

it in the form of time-invariant, level-dependent scaling factors. These are 3D fields used to

spread 2D emissions over multiple levels. Their calculation is based on emissions field

attributes (specifying the type of profile) and the model’s horizontally varying level thickness.

In the UM, the calculation is only required once for each field. It is done within ukca_main1

at the first time step and the data persist throughout the run. However, as indicated in

Section 2 (Item 12), it must be possible to run UKCA without any internal persistence of

spatial fields. An alternative option is therefore required so that the 3D factors can either be

re-calculated at each time step or, ideally, handled by the parent and passed back into

UKCA at each time step with the corresponding emission field values. The latter solution

requires the 3D factors to be obtained from UKCA after their initial calculation. The 3D

scaling factor for each emission can be returned to the parent via the API call that initialises

the emission field values.

Diagnostics

The parent needs to be able to check availability of diagnostics as determined by the UKCA

configuration data, allowing pre-run validation or filtering of diagnostic requests. It also needs

to pass diagnostic requests to UKCA that may vary between time steps. UKCA will use

these requests to determine which diagnostics are to be included in the output. Diagnostic

output can be 2-D or 3-D (equivalent to 0-D or 1-D in a single column model) so two

separate arrays of diagnostic fields will be used. These will be referred to as ‘flat’ diagnostics

and ‘full-height’ diagnostics.

The diagnostic requests will be updated separately from the time step and only diagnostics

with active requests will be output at each time step. When the diagnostics required vary

between time steps it may or may not be desirable for the length and indexing of the

diagnostic output arrays to also vary. Retaining fixed indexing throughout a run may be

convenient but would require space to be allocated in the arrays for all available diagnostics

(possibly a much larger number than those actually used) or for the parent model to be

forced to indicate all diagnostics that will be used in advance. The scheme proposed below

will allow the parent maximum flexibility to control whether, and over what period, the

indexing is fixed or variable.

The parent will set or update diagnostic requests by passing two 1-D arrays of field names,

one for ‘flat’ diagnostics and one for ‘full height’ diagnostics. (Where names of ‘full height’

diagnostics are included in the ‘flat’ diagnostics list they will be taken to indicate surface level

fields). The field name arrays will be accompanied by corresponding arrays of status flags to

indicate whether each request is active. The status flags can be set ‘on’ or ‘off’ by the parent

but will be set ‘off’ by UKCA on return for diagnostics that are unavailable. The output

diagnostic fields will match the lengths and indexing of the field name arrays but only the

fields corresponding to active requests will be valid. (Others should be set to NaN for safety.)

18

The status flags will be integers rather than logicals. This will allow further codes to be used

during the run to indicate either that an output diagnostic field has indeed been updated

since the last request or that an error has occurred and that the field is invalid. Note that all

requests that remain active after UKCA’s availability check against the configuration data

should be valid in theory but the use of an explicit code that is set at the point of update

provides additional confidence.

Parent-specific Subroutines

Where parent-specific subroutine calls are required, generic UKCA internal subroutines will

be called that reference parent model subroutines via pointers declared in UKCA/RADAER

modules. The appropriate parent model subroutines will be provided by calling a new

subroutine ukca_set_handler, passing as arguments the subroutine and a ‘handler type’

label against which it is to be registered. The label will indicate its intended use. Where

appropriate, default alternative processing will be performed by the generic subroutine if no

parent handler is supplied. The parent’s subroutine interface will need to conform to a UKCA

specification as defined by the new API. In some cases, this may mean that existing routines

need to be called via a parent-provided wrapper routine.

Error Handling

On encountering a fatal error condition UKCA (or RADAER) should be configurable to self-

terminate without terminating the parent model (since the parent may want to continue

without running the offending configuration). Instead, the procedure name, a UKCA-specific

error code and an error message will be passed back to the parent in such configurations.

On encountering the error or warning condition, a procedure will call a UKCA error handler

(replacing calls to the UM ereport routine). In the case of a fatal error, the UKCA error

handler will determine whether to abort or return control to the calling procedure depending

on the configuration. If aborting, it will either pass the error information to a parent-model

error handler if one is supplied or it will write the error information to the standard error

stream itself.

On encountering a warning, the UKCA error handler will either send warning information to a

parent-model error handler if one is supplied or it will write the warning information to the

standard error stream itself. It will then return control to the calling procedure.

After calling the UKCA error handler, the procedure trapping the error will in the case of fatal

errors (not warnings) return control to the calling procedure after setting output arguments

provided for the error information and calling dr_hook if applicable. Each call to a procedure

that can potentially trap an error must be then be followed by a status check to determine

whether the calling procedure can continue.

In the UM, UKCA will be configured to always call ereport via the UKCA handler on

encountering an error or warning. However, it is good defensive programming practice for

ereport calls to be included after UKCA API calls that may return an error.

19

Increasing the amount of error checking available to the parent application prior to starting

UKCA integration would be desirable as indicated in Section 2 (Item 16) to support prior

validation of input for ensemble runs but is not a high priority.

Thread-safe Build Option

The update of environment fields separately from the API call that executes the main time

step (as described above) will be advantageous for some parent applications but is not

compatible with LFRic due to its reliance on the use of public module variables, accessible

throughout UKCA, for spatial fields. The issue arises because LFRic will typically use

separate threads, each with its own UKCA time-step call, to process different vertical

columns on the same node of a parallel architecture. This means that fields that may vary

horizontally in LFRic cannot safely be shared between UKCA subroutines as module

variables. They must only be accessed via argument lists to avoid memory conflicts between

separate instances of the time-step call. The relevant column of each field will be passed to

ukca_step at each call.

An LFRic-compatible, thread-safe build will be supported by

• Providing an alternative top-level subroutine in the API, to be referred to as the

UKCA step control routine, that encapsulates the environment field updates

(including emissions) and the ukca_step call as UKCA internal calls. This will take

each environment field from the parent as a separate array argument.

• Transferring environment fields to ukca_step via the argument list or via USE

statements depending on the build. This will be controlled by pre-processor

directives.

• Ensuring that all spatial fields that may vary horizontally in the parent application are

accessed internally via subroutine calls and not via USE statements, irrespective of

the build directives. This can be enforced by making the relevant module variables

private in “thread-safe” builds.

• Providing a mechanism to ensure that OpenMP directives within UKCA code are

suppressed in “thread-safe” builds (by pre-processing the code or use of compiler

options). These directives could otherwise interfere with OpenMP directives

introduced by LFRic at a higher level in the calling chain.

In principle, this approach could be used to call multiple instances of UKCA in parallel with

each instance processing 3-D data. However, there is no requirement for this (and none

envisaged) so, to avoid unnecessary complexity in the subroutine interface, it will be

assumed that all data passed to UKCA via the alternative top-level subroutine will be in

reduced dimension form as appropriate for a single column model.

For ease of handling, the environment fields can be packaged as a derived type for internal

use. In the thread-safe API call, they will be passed as separate arguments to avoid the

need for the parent to use a UKCA derived type (see Section 2, point 1). Since the specific

environment variables that are required depend on details of the UKCA configuration, it will

be necessary to pass dummy arguments for unused fields. These can be kept to a minimum

by use of optional keyword arguments and perhaps to some extent by using different calls

20

for different configurations but is probably not practical to eliminate in applications that

support many different configurations. The use of keyword arguments will also make it easier

to change the argument list while maintaining backwards compatibility. The API

documentation should indicate that positional argument association is not explicitly

supported and may produce un results on upgrading to new UKCA versions (as for the

configuration variables).

Emission fields will need to be supported in a similar way to the standard environment fields

but will need special handling as the specific emissions are not known in advance. They can

be grouped into 2 arrays, for 0D and 1D emissions with 2 corresponding arrays providing the

identifying emission numbers. A further array will be needed for 1D scaling factors to be

applied to 0D emission fields.

The general approach described here can be extended to GLOMAP-CLIM and RADAER,

since each will have environment field handling consistent with UKCA and a similar calling

sequence, glomap_clim_calc or ukca_radaer_calc calls being used in place of

ukca_step.

Persistence of Fields Between Time Steps

Whether or not horizontally-varying spatial fields are allowed to persist between time steps

must be under the control of the parent via the configuration settings as specified in Section

2 (Item 12). This is important for compatibility with LFRic since memory for spatial fields will

be re-used by multiple calls to UKCA for different columns within a single time step. In other

applications, it will be more efficient to retain certain field values between time steps as is

done currently in the UM context.

The option to suppress persistence between time steps will apply to all fields that might vary

horizontally in the parent model domain. It will not apply to any spatial fields that are treated

as horizontally uniform. The values of the latter can be re-used safely for all UKCA column

calls in LFRic.

For maximum flexibility, other non-trivial amounts of workspace allocated internally should

similarly be under parent control (Section2, Item13). The temporary workspace allocated

internally should be reviewed and deallocation statements added as appropriate if not

already present. These and existing deallocation statements for such workspace will be put

under the control of the parent via the configuration settings.

Field Names

Names used in the UKCA and RADAER APIs will include literals for prognostic and

diagnostic fields and keywords for optional configuration variable arguments. These names

should be given careful consideration because they will be difficult to change without causing

loss of backwards compatibility in the event that the UKCA standalone code is used in many

different parent applications.

21

In general, configuration variable names will be the same as the corresponding internal

variable names unless a change is justified for clarity. For example, names for Fast-JX

specification variables would have a ‘fastjx_’ prefix added. A similar approach for field

name literals will be taken initially but a review of these names, with community buy-in, is

highly recommended before the standalone code is widely adopted in new applications.

The set of field names will be specific to the UKCA interface and the names therein need not

necessarily match names used to refer to the same fields elsewhere in a parent model. This

is important because the requirements of parent applications will vary (e.g. the UM identifies

fields by STASH codes and other parents may use short field names for their user

interfaces). In particular, it is unnecessary to consider potential name conflicts with similar

fields (e.g. same quantity from a different source) that a parent may handle outside the

context of its communication with UKCA. Handling such conflicts would be the responsibility

of the parent.

Internally, field names literals will be defined by parameters. These should then be used

throughout the UKCA code base to avoid the need for extensive changes if there is a need

to change the names used externally.

3.4 Provisional UKCA API Subroutines

A provisional list of API subroutines is given here with brief descriptions. Subroutines used to

set up the UKCA configuration are listed first, followed by subroutines that provide the parent

with information about this configuration. The following subroutines then relate to setting up

the emissions structure, setting up and updating diagnostic requests, providing information

about these requests, setting or updating environment and other data required in the UKCA

time steps, doing the time step processing and finally resetting UKCA to its un-initialised

state.

A relatively large number of subroutines are to be provided with the aim of allowing the

parent maximum flexibility. This does mean that executing a time step in the UM (and similar

applications) will require multiple subroutine calls but these can easily be encapsulated

within a parent-specific wrapper. If it is felt necessary to be able to hide this complexity from

a parent in future, it would be possible to provide one or more UKCA-specific wrapper

subroutines in the API at a later date to cover typical use cases without compromising

backwards compatibility.

ukca_set_handler

Provides UKCA with a parent-specific subroutine to perform a particular function. The

possible functions are listed in Section 3.2.

ukca_setup

Sets the user configuration variables, checks their validity and sets up everything required to

establish full details of the configuration. This will determine which tracers and NTPs are

used, which diagnostics are available and which emissions data and environmental input

fields are required. Also copies Fast-JX specification data into UKCA and sets up or copies

22

other data that will be fixed for the duration of the UKCA run but are currently used directly

from UM modules (e.g. model grid information). In applications supporting ensemble runs, it

may be called multiple times to validate different sets of input data and provide information to

the parent about potential UKCA runs prior to any being executed.

glomap_clim_setup

Performs a limited setup (of a specific GLOMAP-mode configuration) required for using

GLOMAP-CLIM.

ukca_get_tracer_varlist

Returns the list of field names of active tracers in the current configuration.

ukca_get_ntp_varlist

Returns the list of field names of active non-transported prognostics in the current

configuration.

ukca_get_environment_varlist

Returns the list of field names for environment data required in the current configuration.

ukca_get_emission_varlist

Returns the list of names of active emissions in the current configuration with a

corresponding array indicating the number of emission structure entries required for each

field.

ukca_get_config

Returns other specific information about the current configuration. The information to be

returned is controlled by which optional arguments are supplied.

ukca_register_emission

Adds a new emission entry holding the field attributes into UKCA’s emissions structure and

returns the emission number for identification. On the first call, a count giving the total

number of required emissions entries will be mandatory for setting the size of the emissions

structure.

ukca_set_flat_diagnostic_requests

Set up a new list of ‘flat’ diagnostic requests and the associated status flags. Includes

availability check for each requested diagnostic.

ukca_set_full_ht_diagnostic_requests

Set up a new list of ‘full height’ diagnostic requests and the associated status flags. Includes

availability check for each requested diagnostic.

23

ukca_update_flat_diagnostic_requests

Update one or more status flags associated with an existing list of ‘flat’ diagnostic requests.

Includes availability check for any diagnostics to be activated.

ukca_update_full_ht_diagnostic_requests

Update one or more status flags associated with an existing list of ‘full height’ diagnostic

requests. Includes availability check for any diagnostics to be activated.

ukca_get_flat_diagnostic_varlist

Returns the current list of diagnostic requests in the form of the list of field names

corresponding to the ‘flat’ diagnostic output array and the associated status flags.

ukca_get_full_ht_diagnostic_varlist

Returns the current list of diagnostic requests in the form of the list of field names

corresponding to the ‘full height’ diagnostic output array and the associated status flags.

ukca_set_environment

Sets or updates a named environmental input field. This is normally a 0, 1, 2 or 3D field that

maps directly to the model grid and may be varied by the parent during the run. Will typically

be called at each time step if that is the case. Will optionally return a copy of the updated

field to support internal use by a UKCA or GLOMAP-CLIM control routine in thread-safe

builds where environment module variables are private. (The interface for this routine, or

possibly a separate API routine acting as a wrapper, will need to support the option of calling

with reduced dimension arguments for 0D, 1D or 2D domains and convert to higher

dimension arrays used internally if necessary.)

ukca_set_emission

Sets or updates a numbered emission field, These are 2 or 3D fields mapping directly to the

model grid that may be varied by the parent during the run. Will typically be called at each

time step if that is the case. On first setting a particular field, also calculates a 3D scaling

factor for the emission if needed (based on the vertical_scaling attribute). If an optional

3D scaling factor argument is provided, returns the scaling field to the parent on first setting

an emission or accepts a scaling field from the parent on update calls. Will also optionally

return a copy of the updated emission field to support internal use by a UKCA step control

routine in thread-safe builds where environment module variables are private. (The interface

for this routine, or possibly a separate API routine acting as a wrapper, will need to support

the option of calling with reduced dimension arguments for 0D, 1D or 2D domains and

convert to higher dimension arrays used internally if necessary.)

ukca_step

Performs one UKCA time step by calling ukca_main1. (Will need to support the option of

calling with reduced dimension arguments for 0D, 1D or 2D domains and convert to the

higher dimension arrays expected by ukca_main1 if necessary.)

24

ukca_step_ctl

Performs one thread-safe UKCA time step for a single vertical column with all spatial data

potentially varying between different column calls being supplied via the argument list.

Includes internal calls to ukca_set_environment, ukca_set_emissions and

ukca_step.

glomap_clim_calc

Performs GLOMAP-CLIM calculations required for RADAER and/or for providing CDNC.

glomap_clim_calc_ctl

Performs thread-safe GLOMAP-CLIM calculations (as above) for a single vertical column

with all spatial data potentially varying between different column calls being supplied via the

argument list. Includes internal calls to ukca_set_environment and

glomap_clim_calc.

ukca_reset

Resets UKCA to its un-initialised state to allow another configuration to be setup. (A

separate glomap_clim_reset may be required to keep the build small for GLOMAP-

CLIM, depending on the number of modules involved.)

3.5 Provisional RADAER API Subroutines

ukca_radaer_setup

Sets up the RADAER pre-calculated variables and domain configuration data. Also sets up

the GLOMAP-mode configuration data via an API call to ukca_get_config or from the

argument list if UKCA is unavailable and checks the validity of the resulting RADAER

configuration. In applications supporting ensemble runs, it may be called multiple times to

validate different sets of input data and provide information to the parent about potential

UKCA runs prior to any being executed.

ukca_radaer_get_environment_varlist

Returns the list of field names for environment data (aerosol and physics data) required in

the current configuration.

ukca_radaer_get_config

Returns other specific information about the current configuration. The information to be

returned is controlled by which optional arguments are supplied.

25

ukca_radaer_set_lut_entry

Sets up an entry in the RADAER look-up table for a particular aerosol mode distribution and

waveband.

ukca_radaer_set_environment

Sets or updates a named environmental input profile array. These are arrays of vertical

profiles or single values (in the case of tropopause level) at one or more locations that may

be varied by the parent during the run. Will typically be called at each time step if that is the

case. Aerosol arrays will have an additional dimension for modes or components. Will

optionally return a copy of the updated environment profile array to support internal use by a

UKCA step control routine in thread-safe builds where environment module variables are

private. (The interface for this routine, or possibly a separate API routine acting as a

wrapper, will need to support the option of calling with reduced dimension arguments for 0D

or 1D domains and convert to higher dimension arrays used internally if necessary.)

ukca_radaer_calc

Performs RADAER calculations for a given set of spectral data to provide aerosol optical

properties and modal mixing ratios for parent model’s radiation scheme.

ukca_radaer_calc_ctl

Performs thread-safe RADAER calculations (as above) for a single vertical column with all

spatial data potentially varying between different column calls being supplied via the

argument list. Includes internal calls to ukca_radaer_set_environment and

ukca_radaer_calc.

ukca_radaer_reset

Resets RADAER to its un-initialised state to allow another configuration to be setup.

26

4. Implementation

The UKCA code is being refactored within the UM to conform to the new API design while at

the same time maintaining the existing functionality. The refactored code should not change

results and is required to pass all group UKCA and GLOMAP-CLIM rose stem tests. This

section aims to identify the scope of the development work. Changes will also be required to

LFRic for affected components that have already been ported. At present, this only applies

to a partial port of GLOMAP-CLIM.

In the refactored code, the present UKCA modules (and any new modules created) will

either become UKCA modules that are independent of the UM or UKCA-specific UM

modules that prepare data for calling UKCA routines, perform the calls and handle the

output. These UM modules will be considered to be external to UKCA and will not use

UKCA’s namespace directly. In the context of the interface, they will be referred to as UM-

side modules and will communicate with UKCA by calling the top-level UKCA procedures

provided by UKCA-side modules. These UKCA procedures will be made available via USE

statements in an API module ukca_api_mod.

GLOMAP_CLIM will share the UKCA namespace but have a separate API module

glomap_clim_api_mod. This will allow applications using GLOMAP-CLIM as an

alternative to UKCA to be built with a much smaller set of UKCA source modules than

applications using the full feature UKCA model.

RADAER will have a separate namespace from UKCA itself and a separate API module

ukca_radaer_api_mod, to be used by the UM for access to top-level RADAER

procedures. It will communicate with UKCA by using the UKCA API.

A number of modules currently held in UKCA and GLOMAP_CLIM directories in the UM

repository contain UM-specific code that handles UKCA-related data but will not be directly

involved in the interface. These will also be considered as external modules with respect to

UKCA. A provisional categorisation of the modules from these directories (UKCA, RADAER

or external) is given in the Appendix.

All communication between the UM and UKCA (or RADAER) modules should eventually be

via procedures accessible via the API modules. One-way communication from UKCA (or

RADAER) to the UM via use of internal modules might still be allowed in the short term as it

will not prevent the standalone code from working. However, this is highly undesirable in the

longer term because it makes the UM vulnerable to UKCA (or RADAER) changes that do not

affect the defined API, making it impossible to maintain the UKCA code base independently.

The UM will continue to use the STASH system for UKCA sections but it should be possible

to add or remove diagnostics, prognostics or even complete chemistry schemes in UKCA

without necessarily needing to change UM code (including the STASH master file). UM code

could of course be updated independently to take advantage of new UKCA fields or

schemes. Similarly, it could be updated to remove support for any obsolete fields or

schemes, and ideally should be, but it must at least allow for the fact that the presence of

support for UKCA items in STASH can no longer be considered a robust indicator of their

27

availability. It will be possible for the UM to check availability by enquiring of UKCA directly

rather than using the STASH system (and fail cleanly if a missing item is requested) but this

can only be done after calling ukca_setup. A different solution may be required with

respect to the validation of data in the Rose GUI that is done a priori (See Section 4.9).

4.1 Overview of Work Completed

As of UM vn11.7, the following UKCA API tickets (trac system keyword: UKCA_interface)

have been completed.

• #4367 Initial re-factoring of UM-UKCA interface

• #4819 Tracer handling for UKCA API

• #4822 Environment field handling for UKCA API

• #4876 Emissions and oxidants data handling for new UKCA API

• #5119 Latitude bugs affecting LAM configurations

• #4948 Handling of configuration data for UKCA API

Brief details are given here. See the Ticket Details pages on the UM trac system for full

details.

Note that the new error handling scheme, as described in Version 4 of this document, is

used for handling fatal errors in new modules and in other modules where there have been

significant changes. This means that there is currently a mix of old error handling, where

ereport is called to terminate the run immediately, and new error handling, where control is

returned to the UM before ereport is called. In the present version of the design, the error

handling (described in Section 3.3) has changed to include a configurable option to abort at

the point where the error is trapped (to simplify traceback). This is the preferred option in the

UM.

Initial Re-factoring of UM-UKCA Interface (#4367)

This ticket achieved the following aims.

1. Move D1 access outside of UKCA (as this is UM-specific)

2. Move STASH handling outside of UKCA (as this is UM-specific)

3. Separate UM-specific and UKCA code currently in ukca_setd1defs

4. Separate UM-specific and UKCA processing of non-transported prognostics

5. Ensure early availability of NTP requirements to prepare for the verification of NTP

output requests using UKCA data for reference rather than STASH

The UM call to ukca_main1 was replaced by a call to a UM wrapper subroutine

atmos_ukca that does the necessary UM-specific preparation and post-processing for

calling the modified ukca_main1 via the API subroutine ukca_step. (ukca_step is

currently just a pseudonym for ukca_main1 but will ultimately act as a wrapper calling

28

ukca_main1 as a separate subroutine to support the option of reduced dimension

arguments for 1-D or 0-D domains.)

Two other UKCA API subroutines were introduced: ukca_setup and

ukca_get_ntp_varlist. Much of the initialisation code that was formerly done at the first

UKCA time step is now done within ukca_setup before the start of the model run.

Tracer Handling for UKCA API (#4819)

This ticket achieved the following aims.

1. Add a new tracer initialisation routine to be called during initial UKCA setup that will

define the list of tracers required for the present configuration.

2. Add a new subroutine ukca_get_tracer_varlist to retrieve the list of tracers by

name that are required for the present UKCA configuration.

3. Use this list of tracer names for the mapping between UM and UKCA tracer fields.

4. Move copying of tracers between UM and UKCA arrays outside ukca_main1 so that

it becomes the responsibility of the UM.

Environment Field Handling for UKCA API (#4822)

This ticket achieved the following aims.

1. Add a new API subroutine ukca_get_environment_varlist to retrieve the list of

environment fields required for the present UKCA configuration.

2. Add a new API subroutine ukca_set_environment to allocate and set internal

UKCA environment fields by name.

3. Change UM-side subroutine ukca_setd1defs to determine whether D1 fields are

required using the list returned by ukca_get_environment_varlist. Make

equivalent changes to ukca_set_trace_gas_mixratio to determine which gas

mixing ratio values are required.

4. Call ukca_set_environment for each field extracted from D1 to update UKCA.

Also call this subroutine for each of the required gas mixing ratio values.

5. Ensure all required internal environment fields are present for the UKCA time step.

6. Deallocate/reset the internal environment fields at the end of the UKCA time step.

Emissions and Oxidants Data Handling for New UKCA API (#4876)

This ticket achieved the following aims.

1. Move the emissions processing concerned with reading and interpolating data from

NetCDF files out of ukca_main1 into a new API subroutine

ukca_set_emissions_from_nc.

29

2. Move the offline oxidants processing concerned with reading and interpolating data

from NetCDF files out of ukca_main1 into a new API subroutine

ukca_set_oxidants_from_nc.

3. Call the new subroutines from the UM before ukca_step to setup/update the

emissions and offline oxidants data as required.

Note that these subroutines were designated as API subroutines in Version 4 of this design

document. However, owing to design changes that shift more of the responsibility for file IO

to the parent, they will be replaced in the final API with part of their processing being

retained in the UM.

Latitude Bugs Affecting LAM Configurations (#5119)

This ticket was raised as a bug fix but also involved a general rationalisation of the handling

of latitude and longitude-related fields throughout UKCA. The ticket achieved the following

aims.

1. Fix bugs affecting LAMs due to the use of incorrect UM location variables

sin_theta_latitude, fv_cos_theta_latitude and tan_theta_latitude.

These variables relate to grid latitude rather than true latitude but are, in most cases,

interpreted as relating to true latitude within UKCA.

2. Fix bug affecting LAMs due to the use of the variable f3u_by_omega (based on UM

variable f3_at_u) as a proxy for the true location variable sin_latitude.

3. Avoid the direct use of the UM module variables relating to true latitude and longitude

within core UKCA modules. These variables should instead be passed from the UM

to UKCA as arguments via the new UKCA API. An exception is made for the UKCA

module ukca_volcanic_so2 since this includes UM-specific spatial grid

processing that will need to be moved out of UKCA in a future ticket.

4. Avoid the need for the values of the true location variables to persist within UKCA

between time steps (for LFRic compatibility).

5. Avoid unnecessary recalculation of the true location variable values at each time

step.

Following the changes in this ticket, true latitude and longitude and all trig. functions related

to true latitude are passed to UKCA via the new API by calling ukca_set_environment.

Handling of configuration data for UKCA API (#4948)

This ticket achieved the following aims.

1. Pass configuration data from ukca_option_mod via the ukca_setup argument

list, avoiding direct use of the UM module in UKCA.

2. Do the same for some additional configuration variables, related to environmental

drivers, that are already handled by ukca_setup.

3. Manage configuration data in UKCA using well-organised data structures in the core

configuration data module ukca_config_specification_mod.

30

4. Add new API subroutine ukca_get_config to return internal values of

configuration variables.

5. Perform post-setup checks in the UM to ensure that the UKCA configuration matches

requirements.

6. Move UM-specific validation of configuration variables out of UKCA modules.

4.2 Overview of Further Work Required

The UM-side subroutines in the UM vn11.7 code that will be affected by the re-factoring are

shown in the tree below, highlighted in plain bold text, with their UM calling chains. The

routines that are part of the current UKCA API are likewise shown in bold italics.

um_shell

atmos_ukca_setup

ukca_setup

check_ukca_configuration

ukca_get_config

ukca_get_config

stash_proc

 prelim

 tstmsk

 tstmsk_ukca (for STASH requests)

addres

 primary

 tstmsk

 tstmsk_ukca (for tracers)

ukca_set_nmspec

 u_model_4a

 initial_4a

 initphys

 ukca_radaer_read_luts

 ukca_radaer_lut_in

 ukca_radaer_read_precalc

atm_step_4a

 ukca_mode_sussbcoc_5mode (for GLOMAP_CLIM with RADAER)

 ukca_radaer_init

 glomap_clim_radaer_get

 prepare_fields_for_radaer

 allocate_ukca_cdnc

 ukca_mode_sussbcoc_5mode (for GLOMAP_CLIM, no RADAER)

glomap_clim_arg_act_get_cdnc

glomap_clim_jones_act_get_cdnc

 atmos_physics1

 ukca_set_trace_gas_mixratio

 set_gas_mixratio

 ukca_set_environment

 rad_ctl

 sw_rad

31

 socrates_init

 set_aer

 lw_rad

 set_aer

 atmos_ukca

 ukca_get_tracer_varlist

 ukca_get_ntp_varlist

 ukca_get_environment_varlist

 ukca_um_d1_initialise

 getd1flds

 getd1data

 ukca_set_environment (for fields in D1)

 ukca_set_environment (for fields not in D1)

 ukca_set_emissions_from_nc

 ukca_set_oxidants_from_nc

ukca_step (a.k.a. ukca_main1)

Sub-tree for RADAER calls:

set_aer

ukca_radaer_set_aerosol_fields

ukca_radaer_prepare

ukca_radaer_band_average

ukca_radaer_compute_aod

ukca_radaer_3d_diags

In the revised UM-UKCA interface:

• ukca_setup to be extended to handle configuration data such as domain

dimensions and data from non-UKCA namelists used in UKCA.

• tstmsk_ukca to be replaced by using information on field requirement/availability

from calls to ukca_get_tracer_varlist, ukca_get_ntp_varlist and

ukca_set_*_diagnostic_requests (see Section 4.9 for details).

• ukca_set_nmspec to be called before primary to allow primary to check D1 vs

UKCA’s required tracer list by STASH code (see Section 4.9 for details).

• ukca_radaer_lut_in calls to be partly replaced by

ukca_radaer_set_lut_entry

• ukca_radaer_read_precalc to read data into temporary storage rather than

directly into precalc structure; structure to be set-up via new

ukca_radaer_setup routine.

• ukca_mode_sussbcoc_5mode to be called via glomap_clim_setup before

atmstep_4a.

• ukca_radaer_init to be simplified to exclude mode configuration data other than

that required by the UM (since RADAER will get these data via calls to

ukca_get_config instead of via UM’s ukca_radaer structure) and called from

ukca_radaer_setup before atmstep_4a.

32

• prepare_fields_for_radaer, glomap_clim_arg_act_get_cdnc and

glomap_clim_jones_act_get_cdnc to be combined under new subroutine

glomap_clim_calc; glomap_clim_radaer_get, allocate_ukca_cdnc and

calls to these to be refactored accordingly within a UM wrapper subroutine that calls

ukca_set_environment to acquire the aerosol mixing ratio fields.

• glomap_clim_calc to pass fields to UM via argument list instead of writing direct

to ukca_radaer structure and to include preparation of aerosol mixing ratio fields

for RADAER currently done in glomap_clim_radaer_get.

• set_aer to call ukca_radaer_set_environment and ukca_radaer_calc in

place of current RADAER routines.

• ukca_set_emissions_from_nc to communicate with UKCA using

ukca_get_emission_varlist, ukca_register_emission and

ukca_set_emission.

• ukca_set_oxidants_from_nc to communicate with UKCA using

ukca_set_environment.

• atmos_ukca to include calls to ukca_update_*_diagnostic_requests.

A range of other tasks will be required in preparation for use of UKCA and RADAER in LFRic

and other potential non-UM applications.

The required implementation tasks are listed in the following subsections with additional

notes for individual tasks where appropriate. This should serve as a reference when raising

tickets but it is not intended for there to be a 1:1 mapping between tickets and tasks in all

cases. Tasks are listed in a logical sequence but the actual order of implementation may

vary (subject to restrictions imposed by any task dependencies).

Priority will initially be given to work to support the implementation of prognostic aerosol in

LFRic using the GLOMAP 5-mode setup (MS2) with offline oxidants. This will not need to be

fully independent of the UM since LFRic will have access to UM modules. In addition, it has

its own surrogate versions of ereport and umPrint that provide access to LFRic-specific

routines.

4.3 UKCA Changes Required for Prognostic Aerosols in LFRic

The following tasks have been identified as preparation work for the porting of prognostic

aerosols, with offline oxidants chemistry, to LFRic.

• Identify remaining UKCA inputs used directly from UM modules and handle via the

API

• Revise the handling of spatial fields currently persisting between timesteps to be

LFRic compatible

• Refactor API for emissions and offline oxidants

• Add API support for thread-safe UKCA calls (including modification of previously

implemented API routines to handle reduced dimensions)

• Re-work internal flow of spatial data in UKCA for multi-thread compatibility

33

• Introduce new diagnostic handling scheme

• Make essential diagnostics available via new scheme

The scope of the above tasks will not generally extend to work that is required to support the

full chemistry in LFRic at this stage (but see Section 4.5 below). Note that re-working the

internal data flow will be a pre-requisite for running with multiple threads in LFRic and will be

required for performance reasons but can be done after the initial coupling. Note also that a

capability to output UKCA diagnostics is desirable for LFRic at an early stage but is a lower

priority requirement that the other tasks listed.

The following notes relate to the diagnostic capability.

Introduce new diagnostic handling scheme

UKCA diagnostic requests will be in the form of two separate lists of field names, for ‘flat’

and ‘full height’ diagnostics, and associated lists of flags (see Section 3.3). The handling of

these diagnostic requests requires new subroutines

ukca_set_flat_diagnostic_requests and

ukca_set_full_ht_diagnostic_requests. To cater for diagnostics that are not

required at every time step, the routines ukca_update_flat_diagnostic_requests

and ukca_update_full_ht_diagnostic_requests should also be provided. They

can then be called between time steps to avoid unnecessary work within ukca_step.

Subroutines ukca_get_flat_diagnostic_varlist and

ukca_get_full_ht_diagnostic_varlist will be provided to retrieve the names and

status flags associated with the diagnostic arrays.

The parent will need to establish the availability of diagnostics by checking status flags

returned by ukca_set_flat_diagnostic_requests and/or

ukca_set_full_ht_diagnostic_requests after calls to these routines with all

required diagnostics set active. UKCA will require a mechanism for determining this

availability. In the initial implementation of the standalone code, the UM-based subroutine

tstmsk_ukca could be used if a table associating option codes with field names were

provided within UKCA (to replicate the information available to the UM from the STASH

master). This may prove to be the quickest method to implement but it is a rather UM-centric

solution and may not be ideal in the long term. Certainly, UKCA should not be constrained to

use this mechanism once it is maintained independently from the UM.

Within ukca_step, the new diagnostic processing will need to refer to the internal list of

active diagnostic requests instead of referring to the STASH system to determine whether a

diagnostic is needed. Instead of calling copydiag or copydiag_3d (which write the

diagnostic values to a STASH work array) it will copy them to the 2-D or 3-D diagnostic

output array passed to ukca_main1. It will also set the status flags as indicated in Section

3.3.

A disadvantage of identifying diagnostics by variable name rather than by number is that

UKCA will not be able to refer to ranges of items. Association of appropriate group identifiers

with related variables may provide an efficient alternative.

34

Make essential diagnostics available via new scheme

The systematic replacement of diagnostic processing is a major task that is unsuitable for a

single ticket. It will be more practical to add API support for individual diagnostics as and

when they are needed. Care must be taken to ensure that existing UM diagnostics are still

supported via the old scheme in UM builds, pending conversion of the UM to using the new

API (see Section 4.9). It should be possible to continue to satisfy requests for the same

diagnostic via the new API in non-UM builds or via the UM-based scheme in UM builds.

However, this dual support overhead would be a temporary measure that should only be

supported for a small number of essential diagnostics during the transition period so that

redundant code can easily be removed in due course.

4.4 Further UKCA Changes Required for Full Chemistry in LFRic

Some additional UKCA components are needed to implement full chemistry in LFRic,

notably photolysis and some additional environmental fields that will need to be handled via

the API instead of read from external files within ukca_main1. Also, the tasks in Section 4.3

will need to be reviewed and changes extended to support full chemistry where not already

done.

• Handle Fast-JX specification data via ukca_setup

• Move reference data retrieval and interpolation out of UKCA

• Extensions to aerosol tasks above

4.5 RADAER and GLOMAP-CLIM Changes Required for LFRic

The following changes are required to prepare for porting RADAER to LFRic. They include

modifications to GLOMAP-CLIM (already ported to LFRic for CDNC calculation). These

modifications will provide support for RADAER independently from the UM while also

improving consistency between UKCA and GLOMAP-CLIM interfaces.

• Create new RADAER environment fields module providing

ukca_radaer_get_environment_varlist and

ukca_radaer_set_environment API routines

• Combine main RADAER subroutines under ukca_radaer_calc routine and

refactor UM routine set_aer accordingly to use this and the environment fields

module

• Handle set-up of RADAER via new RADAER API routines ukca_radaer_setup,

ukca_radaer_set_lut_entry and ukca_radaer_get_config (using

ukca_get_config to obtain mode configuration data from UKCA)

• Handle GLOMAP-CLIM configuration via glomap_clim_setup

• Combine separate GLOMAP-CLIM routines under glomap_clim_calc (with fields

destined for RADAER as output arguments) and provide input aerosol mixing ratios

as environment fields

35

• Add API support for thread-safe RADAER and GLOMAP-CLIM calls (and review

internal flow of spatial data to ensure compatibility)

It should be possible to implement the GLOMAP-CLIM changes in a way that preserves

compatibility with the current implementation in LFRic, thus avoiding the need for a

linked LFRic change.

4.6 Remaining UKCA Changes Required for Independence from UM

A comprehensive review of UM modules still used by UKCA modules is required. This may

identify other processing that should be moved out of UKCA or encapsulated and performed

by a UM handler when built with the UM. A number of tasks below have currently been

identified. A basic test-harness will be required to perform simple tests with the UM modules

excluded from the build to ensure true independence. This will also enable testing of non-UM

functionality.

• Add handler registration mechanism for providing parent-specific routines to UKCA

via ukca_set_handler.

• Replace internal UM subroutine calls (umprint, ereport, tr_mix, trsrce, qsat,

qsat_wat_mix and lsp_qclear) with UKCA calls.

• Move code related to plume scavenging and advection out of UKCA (includes plume

scavenging diagnostics and some validation checks still in check_run_ukca)

• Remove UM-scheme support for diagnostics available via new API (co-ordinated with

UM changes detailed in Section 4.9)

• Disable unsupported diagnostics with pre-processor directives in non-UM builds

• Revise support for emissions from explosive volcanos (in ukca_volcanic_so2

module) that is dependent on the UM grid or disable this in non-UM builds

• Remove redundant UM-specific code (e.g. calculation of zonal means in

ukca_calc_noy_zmeans routine that cannot be executed without code

modification)

• Create test harness for standalone code

• Fully document the independent code separately from existing UMDPs

It may be necessary to disable other UM-specific code not identified above in non-UM builds,

depending on whether tasks listed in Section 4.3 – 4.6 have been completed at this stage. It

will be important to include standard tests with the test harness as ‘UM’ standard jobs in rose

stem to ensure that the independence of the code is not compromised by subsequent

changes, pending the transfer of UKCA to its own repository.

4.7 UKCA/RADAER Changes Specifically for Testbeds

A single column testbed environment for UKCA is envisaged that would facilitate large

ensemble runs such as parameter perturbation experiments efficiently, without having to

36

resort to separate executions of the main program. This is one of a range of potential future

developments to be made possible by the creation of a standalone code. The following API-

related tasks will introduce design features specifically for supporting such applications.

• Apply new error handling protocol throughout UKCA.

• Introduce tracer and NTP output options for improving data flow to RADAER

• Add RADAER option to get GLOMAP-mode configuration data via

ukca_radaer_setup argument list (required if UKCA is unavailable)

• Add reset capability (ukca_reset and ukca_radaer_reset)

Once the UKCA reset functionality has been implemented, standard tests with the test

should include tests where multiple UKCA runs are performed in a single execution of the

main program, in particular to ensure that a repeat run with an identical configuration

following a reset produces the same results.

4.8 Further Priority Improvements to Standalone Code

A number of other priority UKCA modifications have been identified that will make it easier to

develop the newly created standalone code independently of the UM and other specific

applications.

• Give parent control of workspace persistence

• Convert remaining diagnostics to new scheme (as needed)

• Use parameters for field names throughout UKCA

• Review external names (literals and keywords) to improve clarity at interface and

avoid need for subsequent changes

4.9 UM Changes Required for Compatibility with Future UKCA

Development

The following UM changes are required to avoid compatibility issues arising as a result of

independent UKCA development.

• Avoid direct use of all UKCA modules in UM other than ukca_api_mod ,

glomap_clim_api_mod & ukca_radaer_api_mod (use ukca_get_config to

access configuration data)

• Address potential for tracer list compatibility issues

• Use new API for diagnostics where possible

• Review module and procedure names (for clarity and to avoid potential clashes,

avoid using ukca_ at the start of names on the UM side of the interface)

The notes below discuss the potential handling of STASH-related compatibility issues.

37

Address Potential for Tracer List Compatibility Issues

Maintaining and developing UKCA and UM codes separately will increase the risk of

compatibility issues that may arise if the tracers that are required for existing UKCA

configurations change. The ability to make such changes independently without being

constrained by parent model requirements is important. In some cases, it may be necessary

to modify tracers in the parent when upgrading to the new version but it other cases the

parent may be able to adapt automatically and remain compatible. UM changes should be

considered that reduce the potential for incompatibility.

The UM holds the active UKCA tracers in the array tracer_ukca that is a pointer to the

relevant section of D1. This is set up within the call to addres (in stash_proc) to hold the

active tracers by calling tstmsk_ukca for each of the primary fields in Section 34 to

determine which are active. tstmsk_ukca checks the option code associated with an item

obtained in the UM STASH master file against details of the requested UKCA configuration

but there is a risk that the UKCA-specific logic used may become out-of-date if changes are

made to UKCA itself.

The UM currently allows tracers to be present in D1 that are not processed by UKCA. This

avoids incompatibility arising in the event that a tracer is removed from a UKCA

configuration, but it could result in unnecessary memory allocation that is not detected.

Two options should be considered for reducing the potential for compatibility issues, a basic

non-adaptive option that relies on making UM changes in the event of a conflict or an

adaptive option that would allow the UM to adapt its tracer list to the UKCA requirement

subject to the availability of codes for all required tracers in the STASH master.

• Non-adaptive option: Add an error trap, checking the D1 active tracer list

(nm_spec_active defined in ukca_set_nmspec) against UKCA’s required tracer

list, that causes the run to fail if any redundant tracers are present. The opposite

case when a tracer required by UKCA is missing from D1 is already trapped by

UKCA. If this solution is chosen, rose-stem tests would fail when upgrading to a new

incompatible version of UKCA and appropriate UM changes would be required.

Although this approach is simple to implement at the outset, the need to keep the

tstmsk_ukca logic compatible with UKCA is a significant disadvantage.

• Adaptive option: Force the set of tracers in D1 to match those specified in UKCA’s

required tracer list (subject to the availability in STASH) by using the latter to define

the former. This approach would make the call to tstmsk_ukca below the STASH

addres subroutine redundant and greatly reduce the potential for incompatibility.

The new method would require the primary routine to check tracer items against

STASH codes corresponding to the list of required tracers from a prior call to

ukca_get_tracer_varlist, instead of relying on tstmsk_ukca. The translation

between STASH codes and tracer names is defined by the nm_spec array set up in

ukca_set_nmspec so the call to this subroutine would need to be moved to occur

before the STASH processing in primary. (nm_spec_active set up therein would

38

just be set up with reference to the list of required tracers.) Similar processing would

be required in the reconfiguration code (in the subroutine rcf_address) to

determine which fields are to be included in the output dump.

The changes outlined under the adaptive option above do not solve the potential problem of

incompatibility with the validation in the Rose GUI since the availability of tracers would still

be determined on the basis of STASH master option codes and stash_testmask.py

logic. This would need to be addressed by changing stash_testmask.py to mirror the

new UM method. Two options should be considered:

• Option 1: Call the UKCA routines ukca_setup and ukca_get_tracer_varlist

directly from stash_testmask.py to obtain the UKCA required tracer list for the

selected configuration. This would be the most robust way of ensuring compatibility

of the Rose validation with the current version of UKCA. However, the need for

compilation of the FORTRAN code may make this impractical.

• Option 2: Replicate the logic of the FORTRAN code in Python (as is currently done

for the STASH-based method). This may introduce a requirement for UKCA to

maintain such a Python code that could be called by the Rose validation. In this case

it should be designed as a generic code that might also be useful in non-UM

applications. Note that in principle Python code could be used to implement the

internal workings of ukca_setup within UKCA, avoiding the need for code-

replication in different languages. However, there is a risk that this could adversely

affect UKCA performance and/or maintainability so replication of the code is probably

preferable.

Use new API for diagnostics where possible

Until all UKCA diagnostics required by the UM are available via the new UKCA API, the UM

will need to support both old and new diagnostic handling schemes. Which scheme is to be

used for an individual STASH code will be determined by whether or not a corresponding

UKCA name is available via a look-up table. Processing of STASH requests for UKCA

prognostics will not require any dual support as these are already supported by the API.

STASH requests for API-supported diagnostics will be consolidated (by the UM), removing

duplicates, to create UKCA diagnostic requests that will ensure the diagnostic fields are

present in the output if they are available from the current configuration. The UKCA

diagnostic requests will be in the form of two separate lists of field names, for ‘flat’ and ‘full

height’ diagnostics, and associated lists of flags (see Section 3.3). These will be passed to

UKCA by calling ukca_set_flat_diagnostic_requests and

ukca_set_full_ht_diagnostic_requests respectively. Some diagnostics are not

required at every time step so ukca_update_flat_diagnostic_requests and

ukca_update_full_ht_diagnostic_requests may be called between time steps.

The validation of STASH requests is currently done by tstmsk_ukca during execution of

the subroutine prelim (within stash_proc) which loops round all STASH requests calling

tstmsk to check availability of each item. To use the new API, the UM must instead check

39

for availability of prognostics by field name in the lists returned by

ukca_get_tracer_varlist or ukca_get_ntp_varlist. The availability of API-

supported diagnostics will be established by checking status flags returned by

ukca_set_flat_diagnostic_requests and/or

ukca_set_full_ht_diagnostic_requests after calls to these routines with all

required diagnostics set active. Having established the availability or otherwise of all

required output fields in the current UKCA configuration, individual STASH requests can

then be processed in the existing prelim loop by checking against this field availability

status. Once all diagnostics are available via the new API, the call to tstmsk_ukca below

prelim will become redundant.

The UM must copy the requested fields from the UKCA output arrays to the appropriate

section’s STASH work array and call stash to do the handling. The variable names

associated with the 2-D and 3-D diagnostic arrays will match those passed to the

subroutines called to set the requests and can also be obtained by calling

ukca_get_flat_diagnostic_varlist and

ukca_get_full_ht_diagnostic_varlist. These subroutines can be called after

ukca_step to access the status flags that indicate the validity of the fields before copying

them to STASH.

As for the tracers, there is a risk that the Rose GUI test for availability of diagnostics, based

on STASH master option codes and stash_testmask.py logic, may become incompatible

with UKCA as UKCA is developed independently. This problem would be best addressed for

all STASH requests (for tracers and other fields) in a consistent way.

40

Appendix: Categorisation of Modules

The following is a list of all modules in UKCA and GLOMAP_CLIM directories of the UM

repository at vn11.7 with individual modules marked to indicate whether they are expected to

be categorised as UKCA, RADAER or UM modules once the refactoring is complete (or

whether they themselves require refactoring as a consequence of including code that will be

split by the interface). This list is an important reference for any development work

proceeding during the transition period. All such work should respect the intended separation

of name spaces to avoid conflicting with the aims of the API development work.

Key to Category Codes

I Internal to UKCA

R Internal to RADAER

X External (i.e UM-side module)

IX Processing to be divided between UKCA and UM

RX Processing to be between RADAER and UM

- Expected to become redundant

Files in UKCA directory

asad_bedriv.F90 I

asad_bimol.F90 I

asad_cdrive.F90 I

asad_chem_flux_diags.F90 I

asad_cinit.F90 I

asad_diffun.F90 I

asad_findreaction.F90 I

asad_flux_dat.F90 I

asad_ftoy.F90 I

asad_fuljac.F90 I

asad_fyfixr.F90 I

asad_fyinit.F90 I

asad_fyself.F90 I

asad_hetero.F90 I

asad_impact.F90 I

asad_inicnt.F90 I

asad_inicnt_col_mod.F90 I

asad_inijac.F90 I

asad_inimpct.F90 I

asad_inix.F90 I

41

asad_inrats.F90 I

asad_jac.F90 I

asad_mod.F90 I

asad_posthet.F90 I

asad_prls.F90 I

asad_setsteady.F90 I

asad_sparse_vars.F90 I

asad_spimpmjp.F90 I

asad_spmjpdriv.F90 I

asad_steady.F90 I

asad_totnud.F90 I

asad_trimol.F90 I

atmos_ukca_mod.F90 X

atmos_ukca_setup_mod.F90 X

emiss_io_mod.F90 X

fastjx_data.F90 I

fastjx_extral.F90 I

fastjx_inphot.F90 IX

fastjx_jratet.F90 I

fastjx_miesct.F90 I

fastjx_opmie.F90 I

fastjx_photoj.F90 I

fastjx_set_aer.F90 I

fastjx_solar2.F90 I

fastjx_specs.F90 IX

fastjx_sphere.F90 I

get_emdiag_stash_mod.F90 X

get_molmass_mod.F90 I

get_nmvoc_mod.F90 I

get_noy_mod.F90 I

init_radukca.F90 X

o3intp_mod.F90 X

param2d_mod.F90 I

photolib/*.F90 I

spcrg3a_mod.F90 R

tstmsk_ukca_mod.F90 X

ukca_2d_bc_read_interp.F90 X

ukca_abdulrazzak_ghan.F90 I

ukca_activ_mini_snr_mod.F90 X

ukca_activ_mod.F90 I

ukca_activate.F90 I

ukca_add_emiss_mod.F90 I

ukca_aero_ctl.F90 I

ukca_aero_step.F90 I

ukca_aerod.F90 I

ukca_age_air_mod.F90 I

ukca_ageing.F90 I

ukca_all_tracers_copy_mod.F90 X

42

ukca_api_mod.F90 I

ukca_be_drydep.F90 I

ukca_be_wetdep.F90 I

ukca_binapara_mod.F90 I

ukca_calc_coag_kernel.F90 I

ukca_calc_drydiam.F90 I

ukca_calc_noy_zmeans.F90 -

ukca_calc_plev_diag_mod.F90 X

ukca_calcminmaxgc.F90 I

ukca_calcminmaxndmdt.F90 I

ukca_calcnucrate.F90 I

ukca_cdnc_jones_mod.F90 I

ukca_cdnc_mod.F90 X

ukca_ch4_stratloss.F90 I

ukca_check_md_nd.F90 I

ukca_check_radaer_coupling_mod.F90 I

ukca_chem1_dat.F90 I

ukca_chem_aer.F90 I

ukca_chem_defs_mod.F90 I

ukca_chem_diags_allts_mod.F90 I

ukca_chem_diags_mod.F90 I

ukca_chem_master.F90 I

ukca_chem_offline.F90 I

ukca_chem_raq.F90 I

ukca_chem_raqaero_mod.F90 I

ukca_chemco.F90 I

ukca_chemco_raq.F90 I

ukca_chemco_raq_init_mod.F90 I

ukca_chemistry_ctl.F90 I

ukca_chemistry_ctl_BE_mod.F90 I

ukca_chemistry_ctl_col_mod.F90 I

ukca_cloudproc.F90 I

ukca_coag_coff_v.F90 I

ukca_coagwithnucl.F90 I

ukca_cond_coff_v.F90 I

ukca_conden.F90 I

ukca_config_defs_mod.F90 I

ukca_config_specification_mod.F90 I

ukca_constants.F90 I

ukca_cspecies.F90 I

ukca_d1_defs.F90 X

ukca_dcoff_par_av_k.F90 I

ukca_ddcalc.F90 I

ukca_ddepaer_incl_sedi_mod.F90 I

ukca_ddepaer_mod.F90 I

ukca_ddepctl.F90 I

ukca_ddepo3_ocean_mod.F90 I

ukca_ddeprt.F90 I

43

ukca_deriv.F90 I

ukca_deriv_aero.F90 I

ukca_deriv_raq.F90 I

ukca_deriv_raqaero_mod.F90 I

ukca_dissoc.F90 I

ukca_diurnal_isop_ems.F90 I

ukca_diurnal_oxidant.F90 I

ukca_drydep.F90 I

ukca_drydiam_field_mod.F90 I

ukca_eg_tracers_total_mass_mod.F90 X

ukca_emdiags_struct_mod.F90 I

ukca_emiss_ctl_mod.F90 I

ukca_emiss_diags_mod.F90 I

ukca_emiss_diags_mode_mod.F90 I

ukca_emiss_factors.F90 I

ukca_emiss_mod.F90 I

ukca_emiss_mode_mod.F90 I

ukca_emiss_struct_mod.F90 I

ukca_environment_check_mod.F90 I

ukca_environment_fields_mod.F90 I

ukca_error_mod.F90 I

ukca_extract_d1_data_mod.F90 X

ukca_fastjx.F90 I

ukca_fdiss.F90 I

ukca_fdiss_constant_mod.F90 I

ukca_feedback_mod.F90 X

ukca_fieldname_mod.F90 I

ukca_fixeds.F90 I

ukca_flupj.F90 X

ukca_fracdiss.F90 I

ukca_hetero_mod.F90 I

ukca_impc_scav.F90 I

ukca_inddep.F90 I

ukca_ingridg.F90 I

ukca_iniasad.F90 I

ukca_init.F90 I

ukca_interp.F90 X

ukca_inwdep.F90 I

ukca_light.F90 I

ukca_light_ctl.F90 I

ukca_main1-ukca_main1.F90 I

ukca_mode_check_artefacts_mod.F90 I

ukca_mode_diags_mod.F90 I

ukca_mode_setup.F90 I

ukca_mode_tracer_maps_mod.F90 I

ukca_mode_verbose_mod.F90 I

ukca_nc_emiss_mod.F90 IX

ukca_nmspec_mod.F90 X

44

ukca_ntp_mod.F90 I

ukca_option_mod.F90 IX

ukca_phot2d.F90 X

ukca_photol.F90 I

ukca_plev_diags_mod.F90 X

ukca_pm_diags_mod.F90 I

ukca_pr_inputs_mod.F90 I

ukca_prim_du_mod.F90 I

ukca_prim_moc.F90 I

ukca_prim_ss.F90 I

ukca_radaer_3D_diags.F90 R

ukca_radaer_band_average.F90 R

ukca_radaer_compute_aod.F90 R

ukca_radaer_get.F90 X

ukca_radaer_get_specinfo.F90 R

ukca_radaer_init-ukca1.F90 X

ukca_radaer_lut_in.F90 RX

ukca_radaer_lut_mod.F90 R

ukca_radaer_precalc_mod.F90 R

ukca_radaer_prepare.F90 R

ukca_radaer_read_luts.F90 X

ukca_radaer_read_precalc.F90 RX

ukca_radaer_saved_mod.F90 X

ukca_radaer_set_aerosol_field.F90 RX

ukca_radaer_struct_mod.F90 X

ukca_radaer_tlut_mod.F90 R

ukca_rainout.F90 I

ukca_raq_diags_mod.F90 I

ukca_read_aerosol.F90 X

ukca_read_offline_oxidants_mod.F90 IX

ukca_read_reff.F90 X

ukca_remode.F90 I

ukca_scavenging_diags_mod.F90 X

ukca_scavenging_mod.F90 X

ukca_scenario_ctl_mod.F90 I

ukca_scenario_prescribed.F90 I

ukca_scenario_rcp_mod.F90 X

ukca_scenario_wmoa1.F90 I

ukca_sediment.F90 I

ukca_set_array_bounds.F90 X

ukca_setd1defs.F90 X

ukca_setup_chem_mod.F90 I

ukca_setup_indices.F90 I

ukca_setup_mod.F90 I

ukca_solang.F90 I

ukca_solflux.F90 I

ukca_solvecoagnucl_v.F90 I

ukca_strat_aero_clim_mmr.F90 I

45

ukca_strat_update.F90 I

ukca_stratf.F90 I

ukca_surfddr.F90 I

ukca_top_boundary.F90 I

ukca_trace_gas_mixratio.F90 X

ukca_tracer_stash.F90 X

ukca_tracer_vars.F90 I

ukca_tracers_mod.F90 I

ukca_transform_halogen.F90 I

ukca_trop_hetchem.F90 I

ukca_tropopause.F90 I

ukca_um_interf_mod.F90 X

ukca_um_surf_wet_mod.F90 X

ukca_update_emdiagstruct_mod.F90 I

ukca_vapour.F90 I

ukca_vgrav_av_k.F90 I

ukca_volcanic_so2.F90 IX

ukca_volume_mode.F90 I

ukca_water_content_v.F90 I

ukca_wdeprt.F90 I

ukca_wetdep.F90 I

ukca_wetox.F90 I

Files in GLOMAP_CLIM directory

get_gc_aerosol_fields_mod.F90 I

glomap_clim_calc_aird_mod.F90 I

glomap_clim_calc_drydiam_mod.F90 I

glomap_clim_cdnc_mod.F90 IX

glomap_clim_drydp_nd_out_mod.F90 I

glomap_clim_fields_mod.F90 I

glomap_clim_get_netcdffile_rec_mod.F90 X

glomap_clim_identify_fields_mod.F90 X

glomap_clim_netcdf_ancil_mod.F90 X

glomap_clim_netcdf_anclist_mod.F90 X

glomap_clim_netcdf_io_mod.F90 X

glomap_clim_netcdf_parameter_mod.F90 X

glomap_clim_option_mod.F90 IX

glomap_clim_pop_md_mdt_nd_mod.F90 I

glomap_clim_radaer_get.F90 IX

prepare_fields_for_radaer_mod.F90 IX

tstmsk_glomap_clim_mod.F90 X

